共查询到20条相似文献,搜索用时 0 毫秒
1.
We demonstrated a tunable Q-switched ytterbium-doped fiber laser (YDFL) using MoWS2/rGO nanocomposite as passive saturable absorber. Further, the Mo1?xWxS2/rGO nanosheets, with x proportion of 0.2, are synthesized using hydrothermal exfoliation technique. The proposed nanocomposite-PVA based thin film is fabricated by mixing the MoWS2/rGO nanosheets with polyvinyl alcohol (PVA). The fabricated thin film is sandwiched between two fiber ferrules to realize the proposed saturable absorber (SA). Further, the proposed MoWS2/rGO-PVA based thin film SA exhibits a fast relaxation time and a high damage threshold which are suitable to realize a Q-switched pulsed laser with a tunable wavelength range of 10?nm that extends from 1028?nm to 1038?nm. For the highest pump power of 267.4?mW, the generated Q-switched pulses exhibit a narrow pulse width of 1.22 μs, the pulse repetition rate of 90.4?kHz, the highest pulse energy of 2.13?nJ and its corresponding average power of 0.193?mW. To the best of author’s knowledge, this is the first realization of a tunable Q-switching fiber laser in a 1?μm wavelength using MoWS2/rGO nanocomposite saturable absorber. 相似文献
2.
A tunable passively Q-switched ytterbium-doped fiber laser using few-layer gallium selenide(GaSe) as a saturable absorber(SA) is demonstrated.The few-layer GaSe SA,which is fabricated by the mechanical exfoliation method,is able to generate a Q-switched fiber laser that has a maximum repetition rate of 92.6 kHz and a minimum pulsed width of 2.3 μs.The highest pulse energy exhibited by the generated pulse is 18.8 nJ with a signal to noise ratio of ~40 dB.The tunability of the proposed laser covers from 1042 to 1082 nm,giving a tuning range of 40 nm. 相似文献
3.
在Tm:LuAG全固态激光器中实现了以氧化石墨烯可饱和吸收体为锁模启动元件的瓦级被动调Q锁模运转.本实验装置以可调谐掺钛蓝宝石激光器作为泵浦源,测得Tm:LuAG固态激光器出光阈值最低为325mW,当吸收抽运功率达到3420 mW时,进入稳定的调Q锁模运行状态.当抽运功率达到8.1 W时,对应的最大输出功率为1740 mW,中心波长为2023 nm,重复频率为104.2 MHz,最大单脉冲能量为16.7 nJ,调制深度接近100%. 相似文献
4.
5.
F.Q. Liu H.R. Xia S.D. Pan W.L. Gao D.G. Ran S.Q. Sun Z.C. Ling H.J. Zhang S.R. Zhao J.Y. Wang 《Optics & Laser Technology》2007,39(7):1449-1453
A passively Q-switched all solid-state Nd:LuVO4 1.06 μm laser was demonstrated by using Cr4+:YAG as saturable absorber. The characteristics of average output power, pulse width, repetition rate, pulse energy, and peak power were studied with different output couplings and initial transmission of saturable absorbers. When output coupling with the transmission of 20% was used, the shortest pulse width of 16 ns at the repetition rate of 12.5 kHz was obtained, which results in the pulse energy of 71 μJ and peak power of 4.43 kW with the initial transmission of 70% of Cr4+:YAG crystal. 相似文献
6.
报道了基于氧化石墨烯的被动调Q掺铒光纤激光器。激光器采用环形腔结构,调Q器件为自制的氧化石墨烯可饱和吸收镜。泵浦功率在81~505 mW范围内时,得到了重复频率68~124 kHz的稳定的调Q脉冲输出,脉宽为0.47~1.60 s。由于泵浦功率限制,激光器最大输出功率为10 mW, 相应单脉冲能量为80.6 nJ。此种基于氧化石墨烯可饱和吸收体的被动调Q光纤激光器体积小、成本低廉、结构简单、稳定性高、光束质量高,具有广阔的应用前景。 相似文献
7.
By considering the Gaussian spatial distributions of the intracavity photon density and the initial population-inversion density, the coupled rate equations for a diode-pumped passively Q-switched laser with V3+:YAG saturable absorber are given. These coupled rate equations are solved numerically and the key parameters of an optimally coupled passively Q-switched laser with V3+:YAG at 1342 nm are determined. These key parameters include the parameters of the gain medium, the saturable absorber and the resonator, which can maximize the pulse energy of singly Q-switched pulse. The optimal calculations for a diode-pumped passively Q-switched a-Nd:GdVO4 laser with V3+:YAG saturable absorber are presented to demonstrate the numerical simulation applicable. 相似文献
8.
A xenon flash-lamp-pumped, passively Q-switched Nd:GdVO4 laser with GaAs semiconductor saturable absorber is demonstrated. The static laser performance is investigated and the static output is 52 mJ when the pump energy is 9.45 J. The dynamic laser has the highest slope efficiency when the GaAs wafer is both the saturable absorber and output coupler. Pulses with duration of 64 ns and dynamic output of 47.6 mJ are obtained when the pump energy is 9.45 J. The highest dynamic–static ratio is 0.9:1. The coupled rate equations are used to simulate the Q-switched process of laser. The theoretical and experimental results are compared and discussed. 相似文献
9.
1.5-MHz repetition rate passively Q-switched Nd:YVO_4 laser based on WS_2 saturable absorber 下载免费PDF全文
A transmission-type tungsten disulfide(WS_2)-based saturable absorber(SA) is fabricated and applied to passively Q-switched Nd:YVO_4 laser.The WS_2 nanosheets are deposited on a quartz substrate by the vertical evaporation method.By inserting the WS2 SA into the plano-concave laser cavity,we achieve 153-ns pulses with an average output power of1.19 W at 1064 nm.To the best of our knowledge,both of them are the best results among those obtained by the Q-switched solid-state lasers with WS_2-based absorbers.The repetition rate ranges from 1.176 MHz to 1.578 MHz.As far as we know,it is the first time that MHz level Q-switched pulses have been generated in all solid state lasers based on low-dimensional materials so far. 相似文献
10.
By taking into account the single-photon absorption (SPA) and two-photon absorption (TPA) processes of GaAs, the Gaussian spatial distributions of the intracavity photon density and the initial population-inversion density, and the pumping and the spontaneous emission during the pulse formation, the new normalized rate equations of a GaAs saturable absorber Q-switched laser are solved. The key parameters of an optimally coupled GaAs saturable absorber Q-switched laser are determined, including the optimal normalized coupling parameter and the optimal normalized GaAs saturable absorber parameters, which can maximize the pulse energy, and a group of general curves are generated for the first time, which clearly show the dependence of the optimal key parameters on the parameters of the gain medium, the GaAs saturable absorber, and the resonator. In addition, the influence including the space variation, the pumping and the spontaneous emission is also shown. Sample calculations for a diode-pumped Nd3+:YVO4 laser with a GaAs saturable absorber are presented to demonstrate the use of the curves and the relevant formulas. 相似文献
11.
《中国光学快报(英文版)》2017,(9)
A 1550 nm Q-switched fiber laser using a carbon platinum saturable absorber deposited on side-polished fiber(SPF) is proposed and demonstrated. The SPF is approximately 2 mm with a polarization-dependent loss(PDL)of 0.4 dB and an insertion loss of 2.5 dB. A stable Q-switched output spectrum is obtained at 1559.34 nm with a peak power of ~6 mW, a pulse width of 1.02 μs, pulse energy of 5.8 nJ, average output power of 0.76 mW, and a repetition rate of 131.6 kHz taken at a pump power of 230.0 mW. A signal-to-noise ratio of 49.62 d B indicates that the Q-switched pulse is highly stable. 相似文献
12.
A passively Q-switched Er-doped fiber laser using a semiconductor saturable absorber mirror (SESAM) is demonstrated. Q-switching is observed with the output power produced at a slope efficiency of 29.4% with respect to the absorbed pump power. The maximum average output power of 8.37 mW is achieved. The pulse repetition frequency obtained can be turned from 1.72 to 7.95 kHz. The pulse energy of 17.2 nJ has been obtained at the pump power of 46.75 mW, and the pulse width is 30 μs. 相似文献
13.
A Q-switched ytterbium-doped fiber laser (YDFL) is proposed and demonstrated using a newly developed multi-walled carbon nanotubes polyethylene oxide (MWCNTs-PEO) film as a passive saturable absorber (SA). The saturable absorber is prepared by mixing the MWCNTs homogeneous solution into a dilute PEO polymer solution before it is left to dry at room temperature to produce thin film. Then the film is sandwiched between two FC/PC fiber connectors and integrated into the laser cavity for Q-switching pulse generation. The laser generates a stable pulse operating at wavelength of 1060.2 nm with a threshold pump power of 53.43 mW. The YDFL generates a stable pulse train with repetition rates ranging from 7.92 to 24.27 kHz by varying 980-nm pump power from 53.42 to 65.72 mW. At 59.55-mW pump power, the lowest pulse width and the highest pulse energy are obtained at 12.18 μs and 143.5 n J, respectively. 相似文献
14.
A Q-switched ytterbium-doped fiber laser(YDFL)is proposed and demonstrated using a newly developed multi-walled carbon nanotubes polyethylene oxide(MWCNTs-PEO)film as a passive saturable absorber(SA).The saturable absorber is prepared by mixing the MWCNTs homogeneous solution into a dilute PEO polymer solution before it is left to dry at room temperature to produce thin film.Then the film is sandwiched between two FC/PC fiber connectors and integrated into the laser cavity for Q-switching pulse generation.The laser generates a stable pulse operating at wavelength of 1060.2 nm with a threshold pump power of 53.43 mW.The YDFL generates a stable pulse train with repetition rates ranging from7.92 to 24.27 kHz by varying 980-nm pump power from 53.42 to 65.72 mW.At 59.55-mW pump power,the lowest pulse width and the highest pulse energy are obtained at 12.18μs and 143.5 nJ,respectively. 相似文献
15.
16.
We propose a Q-switched Er-doped fiber laser(EDFL) with a threshold pumping power as low as 7.4 mW, and demonstrate using graphene polyvinyl alcohol(PVA) thin film as a passive saturable absorber(SA). The SA is fabricated from graphene flakes, which is synthesized by electrochemical exfoliation of graphite at room temperature in 1% sodium dodecyl sulfate aqueous solution. The flakes are mixed with PVA solution to produce a thin film, which is then sandwiched between two ferrules to form a SA and integrated in the EDFL ring cavity to generate a stable Q-switched pulse train. The pulse train operates at 1560 nm with a threshold pump power of 7.4 mW. At maximum 1480 nm pump power of 33.0 mW, the EDFL generates an optical pulse train with a repetition rate of 27.0 kHz and pulse width of 3.56 μs. The maximum pulse energy of 39.4 nJ is obtained at a pump power of 14.9 mW. This laser can be used as a simple and low-cost light source for metrology, environmental sensing, and biomedical diagnostics. 相似文献
17.
Q-switched pulse generation from an all-fiber distributed Bragg reflector laser using graphene as saturable absorber 总被引:1,自引:0,他引:1
A Q-switched distributed Bragg reflector fiber laser using a graphene passive saturable absorber is proposed in a cavity consisting of a fiber Bragg grating and Faraday rotator mirror as end mirrors, together with a highly doped erbium-doped fiber as a gain source. The laser has a Q-switched threshold of about 28 mW and a tunable repetition rate of 10.4-18.0 kHz with varying pump power. The shortest pulse width obtained from the system is 3.7 its, with a maximum pulse energy and peak power of 22.2 nJ and 3.4 mW, respectively. 相似文献
18.
We first report a tunable repetition frequency passively Q-switched 2053 nm Tm,Ho:YLF laser by tuning the tilt angle of the
Cr:ZnS saturable absorber. When the pump power is 1.4 W, the pulse repetition frequency can be tuned from 1.6 to 19.4 kHz
by changing the position of Cr2+:ZnS saturable absorber along the cavity axis. When the Cr2+:ZnS saturable absorber is near the Tm,Ho:YLF crystal, the repetition frequency can be tuned from 0.8 to 4.0 kHz by changing
the tilt angle of the Cr2+:ZnS saturable absorber, furthermore, the pulse width and the pulse energy are near constants of 1.7 μs and 3.5 μJ, respectively. 相似文献
19.
Erbium-doped fibre laser mode-locked by a graphene saturable absorber is presented. Pulses with 630-fs duration and 41.9-MHz repetition frequency were achieved at the centre wavelength of 1562 nm and 9-nm FWHM bandwidth. Multilayer graphene was obtained by mechanical exfoliation from a pure graphite block by using the scotch-tape method and deposited on a fibre ferrule to form a saturable absorber. The laser operated in a mode-locked regime with 37-mW pumping and 4-mW output power. 相似文献
20.
High-power all-fiber passively Q-switched laser using a doped fiber as a saturable absorber: numerical simulations 总被引:1,自引:0,他引:1
We report a design for a power-scalable all-fiber passively Q-switched laser that uses a large mode area Yb-doped fiber as a gain medium adiabatically tapered to an unpumped single-mode Yb-doped fiber, which serves as a saturable absorber. Through the use of a comprehensive numerical simulator, we demonstrate a passively Q-switched 1030 nm pulsed laser with 14 ns pulse duration and 0.5 mJ pulse energy operating at 200 kHz repetition rate. The proposed configuration has a potential for orders of magnitude of improvement in both the pulse energies and durations compared to the previously reported result. The key mechanism for this improvement relates to the ratio of the core areas between the pumped inverted large mode area gain fiber and the unpumped doped single-mode fiber. 相似文献