首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 203 毫秒
1.
Organic molecules are prone to polymorphic formation in the solid state due to the rich diversity of functional groups that results in comparable intermolecular interactions, which can be greatly affected by the selection of solvent and other crystallization conditions. Intermolecular interactions are typically weak forces, such as van der Waals and stronger short‐range ones including hydrogen bonding, that are believed to determine the packing of organic molecules during the crystal‐growth process. A different packing of the same molecules leads to the formation of a new crystal structure. To disclose the underlying causes that drive the molecule to have various packing motifs in the solid state, an electronic concept or function within the framework of conceptual density functional theory has been developed, namely, crystallization force. The concept aims to describe the local change in electronic structure as a result of the self‐assembly process of crystallization and may likely quantify the locality of intermolecular interactions that directs the molecular packing in a crystal. To assess the applicability of the concept, 5‐methyl‐2‐[(2‐nitrophenyl)amino]‐3‐thiophenecarbonitrile, so‐called ROY, which is known to have the largest number of solved polymorphs, has been examined. Electronic calculations were conducted on the seven available crystal structures as well as on the single molecule. The electronic structures were analyzed and crystallization force values were obtained. The results indicate that the crystallization forces are able to reveal intermolecular interactions in the crystals, in particular, the close contacts that are formed between molecules. Strong correlations exist between the total crystallization force and lattice energy of a crystal structure, further suggesting the underlying connection between the crystallization force and molecular packing.  相似文献   

2.
Preparation of organic crystals mainly depends on solution-deposition, sublimation, and melt-deposition techniques. Solid-state growth methods are generally not suitable for organic crystal growth due to the unprocurable mass transfer. Herein, we report two pyridine-substituted fluorenone compounds with extraordinary crystal-growth capacity, and these compounds can directly and quickly form single crystals from their amorphous solid powder by heating under antisolvent-assistance conditions. The novel experimental phenomenon and crystal growth mechanism were investigated in depth. The results indicate that multiple intermolecular hydrogen-bonding sites and planar aromatic structure (prone to π-π interactions) of these molecules dominate the mass transfer during crystal growth by providing enough energy. This discovery enhances our knowledge of solid-state methods for single-crystal growth.  相似文献   

3.
    
The compound 3-hydroxy-6-(4′-nitro)phenylazopyridine (1) was observed to incorporate several organic solvents of crystallisation, forming stable clathrates. These clathrates decompose upon heating and the host material is chemically transformed. Single crystal X-ray diffraction studies on the ethanol clathrate lead to a reasonable model for the host structure. But the guest molecules are severely disordered. Alternatively, the compound forms twinned crystals. The chemically closely related compound2 does not form clathrates.  相似文献   

4.
The rate constants of initial monomolecular stages of thermal decomposition in the solid phase were measured for 22 organic compounds. The ratio of rate constants of decomposition in the melt and solid state, characterizing the reaction retardation in the crystal lattice, was determined. The retardation effect was compared to the physical properties of the crystal. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 7, pp. 1261–1264, July, 1999.  相似文献   

5.
介绍了有机化学新领域──固相光化学研究的重要意义和特点。通过色氨酸类、核酸碱基衍生物同稠环化合物异种分子间固态光化学的研究,揭示出这种反应的高选择性和专一性,对反应历程也进行了初步研究,为合成化学提供了新方法。利用晶格控制物质,使不易进行光化学反应的物质可顺利地定向进行光化学反应,亦可直接用于合成D或L手性化合物,省去拆分。对C-T络合物(电荷转移)和分子化合物的固态光化学也进行了研究。  相似文献   

6.
Organic salts of anthracene‐2,6‐disulfonic acid (ADS) with a wide variety of primary amines have been fabricated, and their arrangements of anthracene molecules and solid‐state fluorescence properties investigated. Single‐crystal X‐ray studies reveal that the salts show seven types of crystal forms and corresponding molecular arrangements of anthracene moieties depending on the amine, while anthracene shows only one form and arrangement in the solid state. Depending on the molecular arrangements, the ADS salts exhibit various solid‐state fluorescence properties: spectral shift (30 nm) and suppression and enhancement of the fluorescence intensity. Especially the ADS salt with n‐heptylamine (nHepA), which shows discrete anthracene moieties in the crystal, exhibits the highest quantum yield (ΦF=46.1±0.2 %) in the series of ADS salts, which exceeds that of anthracene crystal (ΦF=42.9±0.2 %). From these systematic investigations on the arrangements and the solid‐state properties, the following factors are essential for high fluorescence quantum yield in the solid state: prevention of contact between π planes of anthracene moieties and immobilization of anthracene rings. In addition, such organic salts have potential as a system for modulating the molecular arrangements of fluorophores and the concomitant solid‐state properties. Thus, systematic investigation of this system constructs a library of arrangements and properties, and the library leads to remarkable strategies for the development of organic solid materials.  相似文献   

7.
The crystal structure of fluorobenzene is compared with isomorphous crystal structures of molecules of roughly similar shape. The lowest-energy fluorobenzene dimers are identified by theoretical calculations. Molecular pair analysis of the crystal structure of fluorobenzene and of an isomorphous virtual low-energy polymorph of benzene suggests that the important intermolecular interactions in the two structures are closely similar. In particular, the intermolecular C-H...F interactions in the fluorobenzene crystal have approximately the same structure-directing ability and influence on the intermolecular energy as the corresponding C-H...H interactions in benzene. Molecular pair analysis of the isomorphous crystal structures of benzonitrile, alloxan, and cyclopentene-1,2,3-trione indicates that essentially the same crystal structure can be adopted with quite different patterns of pair energies and atom-atom interactions. The question as to whether the packing radius of organic fluorine is larger or smaller than that of hydrogen, is addressed, but not answered.  相似文献   

8.
9.
The charge transport and photophysical properties of N-heteroquinones, which can function as n-type organic semiconductors in organic field-effect transistors (OFETs) with high electron mobility, were systematically investigated using hopping model, band theory, and time-dependent density functional theory (TDDFT). The calculated absorption spectra and electron mobility are in good agreement with experimental results. To the studied compounds, subtle structural modifications can greatly reduce the reorganization energy. There are two main kinds of intermolecular interaction forces of the studied compounds in the crystal, which result from intermolecular π–π and hydrogen bonds interactions, respectively. The results of hopping model show that the electron transport properties are mainly determined by pathways containing intermolecular π–π interactions, and hole transport properties are mainly determined by pathways containing intermolecular hydrogen bonds from the standpoint of transfer integral. Moreover, electronic transfer integral value increases with the enhancement of intermolecular overlap corresponding to the overlap extent of π–π packing. Hole transfer integral value decreases with decreasing the number of hydrogen bonds. This means that charge transport properties can be efficiently tuned by controlling the relative positions of the molecules and the number of hydrogen bonds. The analysis of band structure also supports the conclusion of hopping model.  相似文献   

10.
We established, that crystalline hydrate of 2,3:4,5-di-O-isopropylidene-β-D-arabino-hexos-2-ulo-2,6-pyranose is a new, convenient and stable reagent for solid phase synthesis of peptide derived Amadori products. The structure of the title compound was studied by X-ray analysis, NMR spectroscopy, and high resolution ESI-MS. The crystal structure indicated the existence of two symmetry-independent molecules that were not connected with hydrogen bonds. A comparison with previously reported 2,3:4,5-di-O-isopropylidene-β-D-fructopyranose revealed, that these two compounds are isostructural.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号