首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
《Physics Reports》2004,395(6):357-426
We review the construction and use of complex potentials in reactive scattering and other molecular collisions to calculate continuum quantities (such as state-to-state transition probabilities, cumulative reaction probabilities, or resonance characteristics) with finite grid or finite basis methods. The success of the approach is greatly based on its simplicity. In general these potentials are adjusted phenomenologically or optimized for achieving an absorptive and non-reflecting boundary. For further progress the conceptual and formal framework of the complex potentials and the efficiency of their numerical implementation must be investigated more deeply. We present along this line a formal theory of scattering for complex potentials in one dimension, as well as a detailed account of the functional forms and construction methods proposed. We also demonstrate that part of the acquired knowledge may be transferred to “physical” absorbing potentials, i.e., effective interactions that can be tailored physically (rather than numerically) to accomplish e.g. an improved atomic detection by fluorescence.  相似文献   

2.
The environmental control system (ECS) is one of the most important systems in the aircraft used to regulate the pressure, temperature and humidity of the air in the cabin. This study investigates the influences of different architectures on the thermal performance and network structure of ECS. The refrigeration and pressurization performances of ECS with four different architectures are analyzed and compared by the endoreversible thermodynamic analysis method, and their external and internal responses have also been discussed. The results show that the connection modes of the heat exchanger have minor effects on the performance of ECSs, but the influence of the air cycle machine is obvious. This study attempts to abstract the ECS as a network structure based on the graph theory, and use entropy in information theory for quantitative evaluation. The results provide a theoretical basis for the design of ECS and facilitate engineers to make reliable decisions.  相似文献   

3.
The fundamental frequency coefficient for a rectangular plate with edges elastically restrained against both translation and rotation is calculated by using polynomial coordinate functions and the Rayleigh-Ritz method. The approach is simple and straightforward and allows the solution of a rather difficult elastodynamics problem. Complicating factors (orthotropic properties, in-plane forces, concentrated masses, etc.) can also be taken into account without formal difficulties.  相似文献   

4.
The stabilization method provides an efficient approach to many problems in atomic and molecular dynamics. Real avoided crossings and smoothing techniques provide the relevant information to compute real density of states. The aim of this letter is to present an extension of the stabilization method that allows for a direct determination of full Green functions and resonance energies. The method is based on the use of optical potentials and perturbation theory. Real avoided crossings of the original stabilization method become complex and resonance energies appear to stabilize in the complex-energy plane. A numerical illustration is presented for a simple model of shape resonance. Accurate results are obtained with a small number of real square-integrable functions as in the original stabilization method. The computational efficiency of the approach and its generality are emphasized.  相似文献   

5.
We investigate the effect of a static electric field on photoionization of the He atom in the ground 1S and low-lying 2S and 2P excited states. The field-affected ionization potential and photoionization cross-section are determined from the complex eigenvalues of the time-dependent Schr?dinger equation solved by the complex rotation method in the Floquet ansatz. Accuracy of the method is enhanced by the use of the Hylleraas basis set. For the ground state of helium, we find that the total photoionization cross-section remains constant or decreases as a function of the DC field strength until this field reaches a certain critical value. For the low-lying excited states, effect of the static field is similar to the ordinary DC Stark effect.  相似文献   

6.
The completeness of the eigenfunctions of a self-adjoint Hamiltonian, which is the basic ingredient of quantum mechanics, plays an important role in nuclear reaction and nuclear-structure theory. Here we present the first formal proof of the completeness of the two-body Coulomb scattering wave functions for a repulsive unscreened Coulomb potential using Newton’s method (R. Newton, J. Math. Phys. 1, 319 (1960)). The proof allows us to claim that the eigenfunctions of the two-body Hamiltonian, with the potential given by the sum of the repulsive Coulomb plus short-range (nuclear) potentials, form a complete set. It also allows one to extend Berggren’s approach for the modification of the complete set of eigenfunctions by including the resonances for charged particles. We also demonstrate that the resonant Gamow functions with Coulomb tail can be regularized using Zel’dovich’s regularization method. Communicated by U.-G. Meiβner For the continuum spectrum the eigenfunctions are not square-integrable, strictly speaking we need to use a rigged Hilbert space which extends the normal Hilbert space by bringing together the discrete and continuum spectrum eigenstates.  相似文献   

7.
We describe and study geometric properties of discrete circular and spherical means of directional derivatives of functions, as well as discrete approximations of higher order differential operators. For an arbitrary dimension, we present a general construction for obtaining discrete spherical means of directional derivatives. The construction is based on using Minkowski’s existence theorem and Veronese maps. Approximating the directional derivatives by appropriate finite differences allows one to obtain finite difference operators with good rotation invariance properties. In particular, we use discrete circular and spherical means to derive discrete approximations of various linear and nonlinear first- and second-order differential operators, including discrete Laplacians. A practical potential of our approach is demonstrated by considering applications to nonlinear filtering of digital images and surface curvature estimation.  相似文献   

8.
We present a new method for construction of high-order parametrizations of surfaces: starting from point clouds, the method we propose can be used to produce full surface parametrizations (by sets of local charts, each one representing a large surface patch – which, typically, contains thousands of the points in the original point-cloud) for complex surfaces of scientific and engineering relevance. The proposed approach accurately renders both smooth and non-smooth portions of a surface: it yields super-algebraically convergent Fourier series approximations to a given surface up to and including all points of geometric singularity, such as corners, edges, conical points, etc. In view of their C smoothness (except at true geometric singularities) and their properties of high-order approximation, the surfaces produced by this method are suitable for use in conjunction with high-order numerical methods for boundary value problems in domains with complex boundaries, including PDE solvers, integral equation solvers, etc. Our approach is based on a very simple concept: use of Fourier analysis to continue smooth portions of a piecewise smooth function into new functions which, defined on larger domains, are both smooth and periodic. The “continuation functions” arising from a function f converge super-algebraically to f in its domain of definition as discretizations are refined. We demonstrate the capabilities of the proposed approach for a number of surfaces of engineering relevance.  相似文献   

9.
The paper is devoted to the investigation of the relationship between different methods used to derive weighting functions required to solve numerous inverse problems related to the remote sensing of the Earth's atmosphere by means of scattered solar light observations. The first method commonly referred to as the forward-adjoint approach is based on a joint solution of the forward and adjoint radiative transfer equations and the second one requires the linearized forward radiative transfer equation to be solved. In the framework of the forward-adjoint method we consider two approaches commonly used to derive the weighting functions. These approaches are referenced as the “response function” and the “formal solution” techniques, respectively. We demonstrate here that the weighting functions derived employing the formal solution technique can also be obtained substituting the analytical representations for the direct forward and direct adjoint intensities into corresponding expressions obtained in the framework of the response function technique. The advantages and disadvantages of different techniques are discussed.  相似文献   

10.
基于速度梯度张量的四元分解对若干涡判据的评价   总被引:1,自引:0,他引:1       下载免费PDF全文
李震  张锡文  何枫 《物理学报》2014,63(5):54704-054704
本文基于速度梯度张量分析,对其中四种ω判据、Q判据、w判据、λci判据的物理意义和局限性进行分析,揭示各判据常用等值面展示的涡形态或强度的实际物理意义.首次采用基于速度梯度张量正规性的四元分解,将流体微元的运动分解为胀缩、沿正规标架的轴向变形、做平面运动和简单剪切,使得各涡判据的运动学意义更加清晰.涡量ω反映的流体微元的平均转动中总是包含简单剪切运动;Q判据可揭示流体微元在复特征向量平面上净转动相对于轴向变形的强弱,是净转动存在的充分但非必要条件;fi判据能准确辨别净转动是否存在,却无法表示出净转动的强度;在净转动存在的前提下,λci可反映其绝对强度大小,净转动是复特征向量平面内正规转动和简单剪切的总和效果,正规转动是最基本的转动.新引入的四元分解方法有利于深入了解流体的涡及其运动.  相似文献   

11.
A Gibbs-like approach for simultaneous multi-scale correlation functions in random, time-dependent, multiplicative processes for the turbulent energy cascade is investigated. We study the optimal log-normal Gibbs-like distribution able to describe the subtle effects induced by non-trivial time dependency on both single-scale (structure functions) and multi-scale correlation functions. We provide analytical expression for the general multi-scale correlation functions in terms of the two-point correlations between multipliers and we show that the log-normal distribution is already accurate enough to reproduce quantitatively many of the observed behavior. The main result is that non-trivial time effects renormalize the Gibbs-like effective potential necessary to describe single-time statistics. We also present a generalization of this approach to more general, non log-normal, potentials. In the latter case one obtains a formal expansion of both structure functions and multi-scale correlations in terms of cumulants of all orders.  相似文献   

12.
Within the framework of Gaussian equivalent representation method a new procedure of obtaining equations of state for simple liquids is discussed in some technical details. The developed approach permits one to compute partition and distribution functions for simple liquids with arbitrary form of the central two-body potential of inter-molecular interaction. The proposed approach might become of great use for computing thermodynamic and structural quantities of simple particle and polymer systems. We believe that this technique can also provide an interesting possibility to reduce the sign problem of other methods of computer simulation based on a functional integral approach.  相似文献   

13.
Internal relations between the Damour-Ruffini approach and the Unruh approach to dealing with the Hawking effects are shown. The Unruh-type analytical wave functions can be obtained by means of the analytical continuation method suggested by Damour and Ruffini. In fact, Unruh-type analytical wave functions are complex conjugate functions of Damour-Ruffini type. Normalizing each of them, or making use of them to construct the Bogoliubov transformation, one can get the same Hawking thermal spectrum. The pure state wave function defined on the connected complexr space-time manifold is a mixture showing thermal properties in the realr space-time manifold, which is divided into two parts by the event horizon.  相似文献   

14.
We prove a Gleason-type theorem for the quantum probability rule using frame functions defined on positive-operator-valued measures (POVMs), as opposed to the restricted class of orthogonal projection-valued measures used in the original theorem. The advantage of this method is that it works for two-dimensional quantum systems (qubits) and even for vector spaces over rational fields—settings where the standard theorem fails. Furthermore, unlike the method necessary for proving the original result, the present one is rather elementary. In the case of a qubit, we investigate similar results for frame functions defined upon various restricted classes of POVMs. For the so-called trine measurements, the standard quantum probability rule is again recovered.  相似文献   

15.
In this paper we shall argue that conformal transformations give some new aspects to a metric and changes the physics that arises from the classical metric. It is equivalent to adding a new potential to relativistic Hamilton–Jacobi equation. We start by using conformal transformations on a metric and obtain modified geodesics. Then, we try to show that extra terms in the modified geodesics are indications of a background force. We obtain this potential by using variational method. Then, we see that this background potential is the same as the Bohmian non-local quantum potential. This approach gives a method stronger than Bohm’s original method in deriving Bohmian quantum potential. We do not use any quantum mechanical postulates in this approach.  相似文献   

16.
We present a new method for construction of high-order parametrizations of surfaces: starting from point clouds, the method we propose can be used to produce full surface parametrizations (by sets of local charts, each one representing a large surface patch – which, typically, contains thousands of the points in the original point-cloud) for complex surfaces of scientific and engineering relevance. The proposed approach accurately renders both smooth and non-smooth portions of a surface: it yields super-algebraically convergent Fourier series approximations to a given surface up to and including all points of geometric singularity, such as corners, edges, conical points, etc. In view of their C smoothness (except at true geometric singularities) and their properties of high-order approximation, the surfaces produced by this method are suitable for use in conjunction with high-order numerical methods for boundary value problems in domains with complex boundaries, including PDE solvers, integral equation solvers, etc. Our approach is based on a very simple concept: use of Fourier analysis to continue smooth portions of a piecewise smooth function into new functions which, defined on larger domains, are both smooth and periodic. The “continuation functions” arising from a function f converge super-algebraically to f in its domain of definition as discretizations are refined. We demonstrate the capabilities of the proposed approach for a number of surfaces of engineering relevance.  相似文献   

17.
We obtain analytical expressions for the energy eigenvalues of both the Schioberg and Eckart potentials using an approximation of the centrifugal term.In order to determine the e-states solutions,we use the Feynman path integral approach to quantum mechanics.We show that by performing nonlinear space-time transformations in the radial path integral,we can derive a transformation formula that relates the original path integral to the Green function of a new quantum solvable system.The explicit expression of bound state energy is obtained and the associated eigenfunctions are given in terms of hypergeometric functions.We show that the Eckart potential can be derived from the Schioberg potential.The obtained results are compared to those produced by other methods and are found to be consistent.  相似文献   

18.
Martin Willeke 《Molecular physics》2013,111(10):1353-1360
Detailed molecular dynamics simulations are carried out to investigate the translation–rotation coupling in linear molecules. We calculated the moment of inertia ratio dependence of the self–diffusion coefficients D, the so–called dynamic isotope effect on the self–diffusion, in pure fluids. Our model systems consist of linear homonuclear pseudo–triatomic rigid molecules for three different molecular sizes over a wide range of density for a given temperature. For a compact representation of our results an exponential approach is employed, which demonstrates a strong translation–rotation coupling on the self–diffusion coefficient in a linear molecule. We find as a main result that in contrast to the low density behaviour at high densities the change of the rotation–translation coupling as a function of the moments of inertia is quite similar for all investigated molecules and we could explain this finding by a careful inspection of the corresponding velocity autocorrelation functions. Finally we present a comparison of experimental data for 20 neat molecular liquids and the corresponding theoretical predictions based on our findings for linear molecules. The good overall agreement indicates that our approach can be generalized and is therefore not only a compact representation of the calculated data but has also large predictive capabilities.  相似文献   

19.
20.
Ensemble simulations, which use multiple short independent trajectories from dispersive initial conformations, rather than a single long trajectory as used in traditional simulations, are expected to sample complex systems such as biomolecules much more efficiently. The re-weighted ensemble dynamics(RED) is designed to combine these short trajectories to reconstruct the global equilibrium distribution. In the RED, a number of conformational functions, named as basis functions,are applied to relate these trajectories to each other, then a detailed-balance-based linear equation is built, whose solution provides the weights of these trajectories in equilibrium distribution. Thus, the sufficient and efficient selection of basis functions is critical to the practical application of RED. Here, we review and present a few possible ways to generally construct basis functions for applying the RED in complex molecular systems. Especially, for systems with less priori knowledge, we could generally use the root mean squared deviation(RMSD) among conformations to split the whole conformational space into a set of cells, then use the RMSD-based-cell functions as basis functions. We demonstrate the application of the RED in typical systems, including a two-dimensional toy model, the lattice Potts model, and a short peptide system. The results indicate that the RED with the constructions of basis functions not only more efficiently sample the complex systems, but also provide a general way to understand the metastable structure of conformational space.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号