首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reaction of [ReOCl3(PPh3)2] with 5,6-diphenyl-3-(2-pyridyl)-1,2,4-trazine (dppt) has been examined and [ReCl3(OPPh3)(dppt)] has been obtained. The triphenylphosphine oxide can be easily replaced by PPh3 in the reaction of [ReCl3(OPPh3)(dppt)] with an excess of triphenylphosphine. The [ReCl3(OPPh3)(dppt)] and [ReCl3(PPh3)(dppt)] complexes have been structurally and spectroscopically characterized. Their molecular orbital diagrams have been calculated with the density functional theory (DFT) method, and their electronic spectra have been discussed on the basis of time-dependent DFT calculations. The compound [ReCl3(OPPh3)(dppt)] has been studied additionally by magnetic measurement. The magnetic behavior is characteristic of mononuclear complexes with d4 low-spin octahedral Re(III) complexes (3T1g ground state) and arise because of the large spin–orbit coupling (ζ = 2500 cm−1), which gives diamagnetic ground state.  相似文献   

2.
Synthesis, Structures, and EPR-Spectra of the Rhenium(II) Nitrosyl Complexes [Re(NO)Cl2(PPh3)(OPPh3)(OReO3)], [Re(NO)Cl2(OPPh3)2(OReO3)], and [Re(NO)Cl2(OPPh3)3](ReO4) The paramagnetic rhenium(II) nitrosyl complexes [Re(NO)Cl2(PPh3)(OPPh3)(OReO3)], [Re(NO)Cl2(OPPh3)2 · (OReO3)], and [Re(NO)Cl2(OPPh3)3](ReO4) are formed during the reaction of [ReOCl3(PPh3)2] with NO gas in CH2Cl2/EtOH. These and two other ReII complexes with 5 d5 ”︁low-spin”︁”︁-configuration can be observed during the reaction EPR spectroscopically. Crystal structure analysis shows linear coordinated NO ligands (Re–N–O-angles between 171.9 and 177.3°). Three OPPh3 ligands are meridionally coordinated in the final product of the reaction, [Re(NO)Cl2(OPPh3)3][ReO4] (monoclinic, P21/c, a = 13.47(1), b = 17.56(1), c = 24.69(2) Å, β = 95.12(4)°, Z = 4). [Re(NO)Cl2(PPh3)(OPPh3)(OReO3)] (triclinic P 1, a = 10.561(6), b = 11.770(4), c = 18.483(8) Å, α = 77.29(3), β = 73.53(3), γ = 64.70(4)°, Z = 2) and [Re(NO)Cl2 (OPPh3)2(OReO3)] (monoclinic P21/c, a = 10.652(1), b = 31.638(4), c = 11.886(1) Å, β = 115.59(1)°), Z = 4) can be isolated at shorter reaction times besides the complexes [Re(NO)Cl3(Ph3P)2], [Re(NO)Cl3(Ph3P) · (Ph3PO)], and [ReCl4(Ph3P)2].  相似文献   

3.
The reaction of the heteroleptic Nd(III) iodide, [Nd(L′)(N″)(μ-I)] with the potassium salts of primary aryl amides [KN(H)Ar′] or [KN(H)Ar*] affords heteroleptic, structurally characterised, low-coordinate neodymium amides [Nd(L′)(N″)(N(H)Ar′)] and [Nd(L′)(N″)(N(H)Ar*)] cleanly (L′ = t-BuNCH2CH2[C{NC(SiMe3)CHNt-Bu}], N″ = N(SiMe3)2, Ar′ = 2,6-Dipp2C6H3, Dipp = 2,6-Pri2C6H3, Ar* = 2,6-(2,4,6-Pri3C6H2)2C6H3). The potassium terphenyl primary amide [KN(H)Ar*] is readily prepared and isolated, and structurally characterised. Treatment of these primary amide-containing compounds with alkali metal alkyl salts results in ligand exchange to give alkali metal primary amides and intractable heteroleptic Nd(III) alkyl compounds of the form [Nd(L′)(N″)(R)] (R = CH2SiMe3, Me). Attempted deprotonation of the Nd-bound primary amide in [Nd(L′)(N″)(N(H)Ar*)] with the less nucleophilic phosphazene superbase ButNP{NP(NMe2)3}3 resulted in indiscriminate deprotonations of peripheral ligand CH groups.  相似文献   

4.
Oxorhenium(V) complexes [ReOX3(PPh3)2] (X = Cl, Br) react with phenylacetylene under formation of complexes with ylide‐type ligands. Compounds of the compositions [ReOCl3(PPh3){C(Ph)C(H)(PPh3)}] ( 1 ), [ReOBr3(OPPh3){C(Ph)C(H)(PPh3)}] ( 2 ), and [ReOBr3(OPPh3){C(H)C(Ph)(PPh3)}] ( 3 ) were isolated and characterized by X‐ray diffraction. They contain a ligand, which was formed by a nucleophilic attack of released PPh3 at coordinated phenylacetylene. The structures of the products show that there is no preferable position for this attack. Cleavage of the Re–C bond in 3 and dimerization of the organic ligand resulted in the formation of the [{(PPh3)(H)CC(Ph)}2]2+ cation, which crystallized as its [(ReOBr4)(OReO3)]2– salt.  相似文献   

5.
The [ReCl3(MeCN)(PPh3)] complex reacts with 1-isoquinolinyl phenyl ketone (N–O) to give [ReCl3(N–O)(PPh3)]. The compound has been studied by IR, UV–Vis spectroscopy, magnetic measurements and X-ray crystallography. The magnetic behavior is characteristic of mononuclear octahedral Re(III) complex with d4 low-spin (3T1g ground state) and arises because of the large spin–orbit coupling, which gives diamagnetic ground state. The molecular orbital diagram of [ReCl3(N–O)(PPh3)] has been calculated with the density functional theory (DFT) method, and time-dependent DFT (TD-DFT) calculations have been employed in order to discussion of its spectroscopic properties in more detail.  相似文献   

6.
The reaction of [ReOBr3(PPh3)2] with 5,6-diphenyl-3-(2-pyridyl)-1,2,4-trazine (dppt) has been examined and [ReBr3(dppt)(OPPh3)] has been obtained. It was characterised by IR, UV–Vis spectroscopy, magnetic measurements, and X-ray crystallography. The electronic structure of [ReBr3(dppt)(OPPh3)] has been studied by DFT/B3LYP level calculations, and TDDFT calculations were employed for discussion of its electronic spectrum in more detail. The magnetic behavior is characteristic of mononuclear complexes with d4 low-spin octahedral Re(III) complexes (3T1g ground state) and arise because of the large spin–orbit coupling (ζ = 2500 cm−1), which gives diamagnetic ground state.  相似文献   

7.
Reaction of Rhenium Trichloride Dinitrosyl with Triphenyl Phosphane. Crystal Structure of [ReCl3(NO) (NPPh3) (OPPh3)] Triphenyl phosphane reacts with ReCl3(NO)2 in dichloro methane solution forming the phosphaneiminato complex [ReCl3(NO)(NPPh3)(OPPh3)], which is characterized by it's i.r. spectrum and by 31P nuclear magnetic resonance. The crystal structure was determined by the aid of X-ray diffraction data (3 133 independent reflexions, R = 3.9%). The complex crystallizes monoclinic in the space group P21/n with four formula units per unit cell. The lattice dimensions are a = 1114, b = 1825, c = 1931 pm, β 96.6°. In the complex the rhenium atom has the coordination number six, the ligands being three chlorine atoms, the linear bonded Nitrosyl group, the O atom of the triphenyl phosphane oxide, which is coordinated trans to the NO ligand, and the N atom of the phosphaneiminato group. The ReN and PN bond lengths of the (NPPh3)? ligand (186 and 163 pm, resp.) indicate double bond character; in contrast to other phosphaneiminato complexes of transition metals with linear array M?N?P, in [ReCl3(NO)(NPPh3)(OPPh3)] the Re? N? P bond angle is only 139°.  相似文献   

8.

In line with our investigations of rhenium nitrosyl complexes, we have studied the reaction of [ReCl3(NO)(OPPh3)(PPh3)] with pyridine. The [ReCl2(NO)(py)3] complex obtained in this reaction has been characterised by IR, electronic spectra and magnetochemical measurements; ligand field parameters and the electronic structure have been determined. The crystal and molecular structure of [ReCl2(NO)(py)3] has been solved by the heavy atom method. Crystals of [ReCl2(NO)(py)3] contain distorted octahedral molecules with the pyridine ligands in the mer-arrangement. The nitrosyl group is coordinated linearly to the rhenium atom as NO+.  相似文献   

9.
B. Machura  M. Wolff  J. Kusz  R. Kruszynski   《Polyhedron》2009,28(14):2949-2964
The paper presents a combined experimental and computational study of mono- and disubstituted Re(V) oxocomplexes obtained in the reactions of [ReOX3(EPh3)2] (X = Cl, Br; E = P, As) with 2-(2-hydroxyphenyl)-1H-benzimidazole (Hhpb). From the reactions of [ReOX3(PPh3)2] with Hhpb in molar ratio 1:1 cis and trans stereoisomers of [ReOX2(hpb)(PPh3)] were isolated, whereas the [ReOX3(AsPh3)2] oxocompounds react with Hhpb to give only cis-halide isomers. The [ReOX2(hpb)(EPh3)] and [ReO(OMe)(hpb)2]·MeCN complexes have been characterized spectroscopically and structurally (by single-crystal X-ray diffraction). The DFT and TDDFT calculations have been carried out for the trans-[ReOBr2(hpb)(PPh3)], cis-[ReOBr2(hpb)(AsPh3)] and [ReO(OMe)(hpb)2], and their UV–Vis spectra have been discussed on this basis.  相似文献   

10.
The [ReCl3(MeCN)(PPh3)2] complex reacts with bis(pyrazol-1-yl)methane (bpzm) to give [ReCl3(bpzm)(PPh3)]. This compound has been studied by IR, UV–Vis spectroscopy, magnetic measurement and X-ray crystallography. The molecular orbital diagram of [ReCl3(bpzm)(PPh3)] has been calculated with the density functional theory (DFT) method. The spin-allowed triplet–triplet electronic transitions of [ReCl3(bpzm)(PPh3)] have been calculated with the time-dependent DFT method, and the UV–Vis spectrum of the title compound has been discussed on this basis. The magnetic behavior is characteristic of a mononuclear d4 low-spin octahedral Re(III) complex (3T1g ground state) and arises because of the large spin–orbit coupling (ζ = 2500 cm−1), which gives a diamagnetic ground state.  相似文献   

11.
The complexes [ReCl2{N2C(O)Ph}(Hpz)(PPh3)2] (1) (Hpz = pyrazole), [ReCl2{N2C(O)Ph}(Hpz)2(PPh3)] (2), [ReCl2(HCpz3)(PPh3)][BF4] (3) and [ReCl2(3,5-Me2Hpz)3(PPh3)]Cl (4) were obtained by treatment of the chelate [ReCl22-N,O-N2C(O)Ph}(PPh3)2] (0) with hydrotris(1-pyrazolyl)methane HCpz3 (1,3), pyrazole Hpz (1,2), hydrotris(3,5-dimethyl-1-pyrazolyl)methane HC(3,5-Me2pz)3 (4) or dimethylpyrazole 3,5-Me2Hpz (4). Rupture of a C(sp3)-N bond in HCpz3 or HC(3,5-Me2pz)3, promoted by the Re centre, has occurred in the formation of 1 or 4, respectively. All compounds have been characterized by elemental analyses, IR and NMR spectroscopy, FAB-MS spectrometry, cyclic voltammetry and, for 1 · CH2Cl2 and 3, also by single crystal X-ray analysis. The electrochemical EL Lever parameter has been estimated, for the first time, for the HCpz3 and the benzoyldiazenide NNC(O)Ph ligands.  相似文献   

12.
The reactions of 5-R-2-hydroxybenzaldehyde-4-allyl-thiosemicarbazone {R: H (L1); Br (L2)} with [MII(PPh3)nCl2] (M = Ni, n = 2 and M = Ru, n = 3) in a 1:1 molar ratio have given stable solid complexes corresponding to the general formula [Ni(L)(PPh3)] and [Ru(HL)2(PPh3)2]. While the 1:1 nickel complexes are formed from an ONS donor set of the thiosemicarbazone and the P atom of triphenylphosphine in a square planar structure, the 1:2 ruthenium complexes consist of a couple from each of N, S and P donor atoms in a distorted octahedral geometry. These mixed-ligand complexes have been characterized by elemental analysis, IR, UV–Vis, APCI-MS, 1H and 31P NMR spectroscopies. The structures of [Ni(L2)(PPh3)] (II) and [Ru(L1H)2(PPh3)2] (III) were determined by single crystal X-ray diffraction.  相似文献   

13.
Yanhong Zhou  Li Guan  Hong Zhang   《Polyhedron》2009,28(13):2667-2672
Four new coordination polymers of cobalt(II) and nickel(II) with functionalized dicarboxylate ligands, namely, [CoIIL1(2,2′-bpy)(H2O)] (1), [NiIIL1(2,2′-bpy)(H2O)]·H2O (2), [CoII2(L2)2(2,2′-bpy)2(H2O)] (3) and [NiII2(L2)2(2,2′-bpy)2(H2O)] (4), where H2L1 = 2,5-dibenzoylterephthalic acid, H2L2 = 4,6-bis(4-methylbenzoyl)isophthalic acid and 2,2′-bpy = 2,2′-bipyridine, were synthesized and characterized by elemental analysis, IR spectra and thermogravimetric analysis. Complex 1 exhibits a zigzag chain with a C–Hπ interaction between the phenyl ring proton and the phenyl ring of an adjacent chains to form a 2D supramolecular sheet. Complex 2 contains two helical chains which extend into 2D via a C–Hπ interaction between the pyridine ring proton and the pyridine ring. Complexes 3 and 4 are isomorphous with helical chains that extend in the same direction and further link to one another by supramolecular forces into a 2D structure. Moreover, magnetic and luminescence properties have been investigated for 1 and 2, respectively.  相似文献   

14.
Novel p-tolylimido rhenium(V) complexes [Re(p-NC6H4CH3)X2(hpb)(PPh3)] and [Re(p-NC6H4CH3)(hpb)2(PPh3)]X (X = Cl, Br) have been obtained in the reactions of [Re(p-NC6H4CH3)X3(PPh3)2] with 2-(2-hydroxyphenyl)-1H-benzimidazole (Hhpb). The compounds were identified by elemental analysis IR, UV-Vis spectroscopy and X-ray crystallography. The electronic structures of the complex [Re(p-NC6H4CH3)Cl2(hpb)(PPh3)] and the cation [Re(p-NC6H4CH3)(hpb)2(PPh3)]+ have been calculated with the density functional theory (DFT) method. Additional information about binding in the [Re(p-NC6H4CH3)Cl2(hpb)(PPh3)] and [Re(p-NC6H4CH3)(hpb)2(PPh3)]+ has been obtained by NBO analysis. The electronic spectra of [Re(p-NC6H4CH3)Cl2(hpb)(PPh3)] and [Re(p-NC6H4CH3)(hpb)2(PPh3)]Cl were investigated at the TDDFT level employing B3LYP functional in combination with LANL2DZ.  相似文献   

15.
Summary The compound [Re(CO)3(PPh3)2Cl] reacts with the lithium salt of thiazole derivatives (L1H = 2-amino-benzothiazole, L2H = 2–N-methyl-aminothiazole, L3H = 2–N-phenylaminothiazole, L4H = 2–N-(4-methoxyphenyl)aminothiazole, L5H = 2–N(4-nitrophenyl)aminothiazole) to give [Re(CO)2-(PPh3)2(L)]. The compounds have been characterized by elemental analysis, i.r. and1H n.m.r. spectra. At room temperature [Re(CO)2(PPh3)(L2)] reacts with L6H (L6H = diphenylacetic acid), to give the carboxylato complex [Re(CO)2 .The crystal structures of [Re(CO)2(PPh3)2(L2)] (2) and [Re(CO)2(PPh3)2(L6)] (6) were determined by x-ray crystallography. [Re(CO)2(PPh3)2(L2)] crystallizes in the monoclinic space group P21/m witha = 9.16(1),b= 24.82(2),c =9.12(1) Å, and = 115.81(4)°; Dc = 1.56 g cm–3for Z = 2.The structure was refined to a final R of 6.4%. The molecules have Cs symmetry. The rhenium atom is six-coordinate with approximately octahedral geometry. The anionic ligand is chelating through the nitrogen atoms and is strictly planar allowing delocalization of the -electron density. [Re(CO)2(PPh3)2(L6)] (6) crystallizes in the monoclinic space group P21/n witha = 22.203(5),b = 18.651(5),c =10.653(3) Å, = 91.08(3)°, Dc = 1.47 g cm–3 for Z = 4. The structure was refined to a final R of 4.7%. The complex is monomeric and the rhenium atom is distorted octahedral with two mutuallytrans PPh3 ligands, twocis CO ligands and one chelating Ph2CHCO 2 ion.  相似文献   

16.
The reaction of [ReO(OMe)Cl2(dpphen)] (dpphen = 4,7-diphenyl-1,10-phenanthroline) with triphenylphosphine has been examined and two novel rhenium complexes - [ReIIICl3(dpphen)(PPh3)]·Me2CO (1) and [ReIVCl4(dpphen)]·CHCl3 (2) - have been obtained. The compounds have been characterised by elemental analysis, IR, UV-Vis spectroscopy, magnetic measurements and X-ray crystallography. The electronic structures of [ReCl3(dpphen)(PPh3)] and [ReCl4(dpphen)] have been studied by DFT/B3LYP level calculations, and TD-DFT calculations have been employed for discussion of the electronic spectra in more detail. The magnetic behaviour of 1 is characteristic of mononuclear complexes with d4 low-spin octahedral Re(III) complexes (3T1g ground state) and arise because of the large spin-orbit coupling (ζ = 2500 cm−1), which gives diamagnetic ground state. For complex 2 the results of calculations revealed value of zero-field splitting parameter D = 10.8 cm−1, g|| = 2.49 and g = 1.51.  相似文献   

17.
The ground- and excited-state structures for a series of Os(II) diimine complexes [Os(NN)(CO)2I2] (NN = 2,2′-bipyridine (bpy) (1), 4,4′-di-tert-butyl-2,2′-bipyridine (dbubpy) (2), and 4,4′-dichlorine-2,2′-bipyridine (dclbpy) (3)) were optimized by the MP2 and CIS methods, respectively. The spectroscopic properties in dichloromethane solution were predicted at the time-dependent density functional theory (TD-DFT, B3LYP) level associated with the PCM solvent effect model. It was shown that the lowest-energy absorptions at 488, 469 and 539 nm for 13, respectively, were attributed to the admixture of the [dxy (Os) → π*(bpy)] (metal-to-ligand charge transfer, MLCT) and [p(I) → π*(bpy)] (interligand charge transfer, LLCT) transitions; their lowest-energy phosphorescent emissions at 610, 537 and 687 nm also have the 3MLCT/3LLCT transition characters. These results agree well with the experimental reports. The present investigation revealed that the variation of the substituents from H → t-Bu → Cl on the bipyridine ligand changes the emission energies by altering the energy level of HOMO and LUMO but does not change the transition natures.  相似文献   

18.
The azine bridged dicatechol ligand (E,E)-benzaldehyde azine (H4L) was fully characterized by X-ray analysis. The reaction of [ReCl6]2− with this compound was studied and the novel Re(IV) complex (HNEt3)(NBu4)[ReCl4(H2L)] was prepared and characterized. The structure and spectroscopy of the compound H4L and its Re(IV) complex were studied experimentally and by means of density functional calculations.  相似文献   

19.
Ag+-assisted dechlorination of blue cis-trans-cis Ru(R-aai-R′)2Cl2 followed by the reaction with chloranilic acid (H2CA) in the presence of Et3N, gives a neutral mononuclear violet complex [Ru(R-aai-R′)2(CA)]. [R-aai-R′=p-R-C6H4—N=N—C3H2—NN, abbreviated as an N,N′ chelator where N(imidazole) and N(azo) represent N and N′, respectively; R = H (a), OMe (b), NO2 (c) and R′= Me (4), Et(5), Bz(6)]. All the complexes exhibit strong intense MLCT transitions in the visible region and weak broad bands at higher wavelength (>700 nm). Visible transitions (580–595 nm) show a negative solvatochromic effect. The cyclic voltammograms show two quasireversible to irreversible couples positive to SCE and are due to CA/CA2− (1.2–1.35 V) and Ru(III)/Ru(II) (1.6–1.8 V) redox processes. Three couples, negative to SCE, are assigned to CA2−/CA3− (−0.2 to −0.3 V), and azo reductions (−0.5 to −0.7, −0.8 to −0.9 V) of the chelated R-aai-R′.  相似文献   

20.
The new dipyridyl ligands N,N′-(methylenedi-p-phenylene)bis(pyridine-4-carboxamide), L1, and N,N′-(methylenedi-p-phenylene)bis(pyridine-3-carboxamide), L2, incorporating amide spacers have been synthesized and reacted with metal salts to give complexes of the types [Cu(L1)2X2] (X = Cl, 1 and X = Br, 2), {[Cu(L1)2(DMF)](NO3)2}, 3, {[Ag2(L1)2](SO4)}, 4, and {[Cu(L2)(DMSO)2(NO3)](NO3)}, 5. All compounds have been characterized by spectroscopic methods and their structures determined by X-ray crystallography.Complexes 1, 2 and 3 form 1-D double-stranded polymeric chains showing rhombic molecular squares with approximate dimensions of 16.95 × 19.13 Å2 for 1, 17.03 × 19.06 Å2 for 2 and 16.66 × 19.94 Å2 for 3. Complex 4 forms infinite 1-D zigzag polymeric chains, which are interlinked through a series of Ag–O interactions to form wavy 1-D ladder like chains, and complex 5 forms 1-D sinusoidal chains. While the L1 ligands in complexes 1, 2 and 3 adopt the cis conformation and that in complex 4 adopts trans conformation, the L2 ligand in complex 5 adopts the trans-anti conformation. The ligand conformations also differ in the dihedral angles between the pyridyl and phenyl rings. All complexes exhibit emissions which may be tentatively assigned as intraligand (IL) π → π* transition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号