首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
氟金云母玻璃陶瓷钻削过程中的刀具磨损特性研究   总被引:1,自引:1,他引:1  
分别用硬质合金刀具和高速钢刀具钻削氟金云母可加工玻璃陶瓷材料,通过对刀具磨损表面形貌的观察和刀具主后刀面磨损带宽度的测试,分析了氟金云母玻璃陶瓷钻削加工中的刀具磨损过程、磨损形式及其机制.结果表明:与低碳钢相比,玻璃陶瓷材料钻削时刀具磨损较大,采用高速钢刀具时磨损比较剧烈,不适合氟金云母玻璃陶瓷材料的钻削加工;硬质合金刀具的磨损形态包括主后刀面磨损、副后刀面磨损以及横刃磨损,硬质合金钻头副后刀面的磨损为氟金云母玻璃陶瓷材料钻削加工的显著特征,磨料磨损和粘着磨损为硬质合金刀具的主要磨损形式;崩刃为硬质合金刀具非正常磨损的主要形式.  相似文献   

2.
The incremental hole-drilling technique (IHD) is a widely established and accepted technique to determine residual stresses in peened surfaces. However, high residual stresses can lead to local yielding, due to the stress concentration around the drilled hole, affecting the standard residual stress evaluation, which is based on linear elastic equations. This so-called plasticity effect can be quantified by means of a plasticity factor, which measures the residual stress magnitude with respect to the approximate onset of plasticity. The observed resultant overestimation of IHD residual stresses depends on various factors, such as the residual stress state, the stress gradients and the material’s strain hardening. In peened surfaces, equibiaxial stresses are often found. For this case, the combined effect of the local yielding and stress gradients is numerically and experimentally analyzed in detail in this work. In addition, a new plasticity factor is proposed for the evaluation of the onset of yielding around drilled holes in peened surface layers. This new factor is able to explain the agreement and disagreement found between the IHD residual stresses and those determined by X-ray diffraction in shot-peened steel surfaces.  相似文献   

3.
As the oil or gas exploration and development activities in deep and ultra- deep waters become more and more, encountering gas hydrate bearing sediments (HBS) is almost inevitable. The variation in temperature and pressure can destabilize gas hydrate in nearby formation around the borehole, which may reduce the strength of the formation and result in wellbore instability. A non-isothermal, transient, two-phase, and fluid-solid coupling mathematical model is proposed to simulate the complex stability performance of a wellbore drilled in HBS. In the model, the phase transition of hydrate dissociation, the heat exchange between drilling fluid and formation, the change of mechanical and petrophysical properties, the gas-water two-phase seepage, and its interaction with rock deformation are considered. A finite element simulator is developed, and the impact of drilling mud on wellbore instability in HBS is simulated. Results indicate that the re- duction in pressure and the increase in temperature of the drilling fluid can accelerate hydrate decomposition and lead to mechanical properties getting worse tremendously. The cohesion decreases by 25% when the hydrate totally dissociates in HBS. This easily causes the wellbore instability accordingly. In the first two hours after the formation is drilled, the regions of hydrate dissociation and wellbore instability extend quickly. Then, with the soaking time of drilling fluid increasing, the regions enlarge little. Choosing the low temperature drilling fluid and increasing the drilling mud pressure appropriately can benefit the wellbore stability of HBS. The established model turns out to be an efficient tool in numerical studies of the hydrate dissociation behavior and wellbore stability of HBS.  相似文献   

4.
The hole-drilling method is a residual-stress measurement technique in which a blind hole (usually 1.6 mm or 3.2 mm in diameter) is drilled into a material and the strain perturbances around the hole are measured by surfacemounted strain gages. The conventional hole-drilling-method procedure is to analyze the net strain changes due to the drilling of the full-depth hole (usually about 100 percent of hole diameter) and to interpret the resulting stress calculations insofar as they represent the average stresses through the hole depth. It has been determined that this procedure may lead to significant errors, particularly where there are large stress variations through the hole depth. Such errors may be difficult to detect simply by observing the strain data. This paper describes a finite-element procedure which was used to develop calibration constants to allow measurements of residual-stress variation with depth to be routinely performed by the hole-drilling method.  相似文献   

5.
The hole-drilling method is one of the most wellknown methods for measuring residual stresses. To identify unknown plane stresses in a specimen, a circular hole is first drilled in the infinite plate under plane stress, then the strains resulting from the hole drilling is measured. The strains may be acquired from interpreting the Moire signature around the hole. In crossed grating Moire interferometry, the horizontal and vertical displacement fields (u and v) can be obtained to determinate two strain fields and one shearing strain field. In this paper, by means of Moire interferometry and three directions grating (grating rosette) developed by the authors, three displacement fields (u, v and s) are obtained to acquire three strain fields. As a practical application, the hole-drilling method is adopted to measure the relief strains for aluminum and fiber reinforced composite. It is a step by step method; in each step a single laminate or equivalent depth is drilled to find some relationships between the drilling depth and the residual strains relieved in the fiber reinforced composite materials.  相似文献   

6.
Two small holes (0.0292 in.), appropriately drilled near the root of a Charpy V-notch, have been shown to reduce markedly the Charpy V-notch transition temperature of various steels. In the present study, three experimental techniques were used to define the effect of two holes on the mechanics of deformation and fracture of notched bars loaded in three- and four-point bending: (1) two-dimensional photoelastic stress analyses were performed on models of both the standard Charpy and drilled geometries; (2) a sensitive dislocation etch-pitting technique was used to observe directly the plastic-strain fields developed in V-notch samples of Fe?3% Si alloy loaded in slow bending; and (3) the Charpy striker was instrumented to record load-time curves during impact-bending and thereby determine the dynamic fracture strength of notched and drilled mildsteel samples. It was determined that two holes donot significantly reduce the elastic stress-concentration factor although they cause considerable redistribution of the local shear stresses around the notch. Consequently, the elastic-plastic state develops quite differently in the presence of two holes, and hole drilling can increase the load-carrying capacity of notched mild-steel bars by more than 100 percent even when bars fail by brittle cleavage prior to general yielding. The implications of these results with respect to other forms of “stress-relieving notches” are discussed.  相似文献   

7.
The hole-drilling technique is a relatively well established and straightforward semidestructive method for measuring residual stresses in fabricated components. However, a number of factors can have a marked influence on the accuracy of this technique. Some of the factors evaluated in the present work were the method of drilling the hole, the size and shape of the hole, and the equations used to calculate the principal residual stresses from the relaxed-strain measurements. In this investigation, air-abrasive hole drilling using a 0.062-in.-ID stationary nozzle gave the most reproducible and accurate results. Of the three approaches used to calculate the residual stresses, one method proved to be superior, especially in a biaxial-stress field.  相似文献   

8.
A finite-element technique to analyze the data obtained by the hole-drilling strain-gage method is presented. In this study, residual stresses are assumed as initial stresses existing in the structural material or component. It is also assumed that the elimination of the initial stresses in the region of the drilled hole changes the measured strains. After putting initial stresses into displacement finite-element equations and comparing the stiffness matrix and the initial stresses matrix with those of the previous increment, equations relating unknown initial stresses and measured strains were obtained. By solving these equations, residual stresses were obtained. In this paper three examples are studied. In the first two examples, calibration constants C1 to be used in determining residual stress were calculated which varied with depth. In the third example, the data obtained by using the hole-drilling method are analyzed. All examples show good agreement with previous studies. Using the present method allows greater flexibility of choice of specimen shape, materials, and experimental procedure than would be possible if only analytic solutions were used.  相似文献   

9.
This paper proposes an analytical solution, using the combined Laplace–Fourier integral transform technique, for a borehole drilled in transversely isotropic porous medium and subjected to a fluid discharge over a finite length of its surface. Especially, the coupled boundary condition between the total radial stress and injection-induced pore pressure at the borehole surface is addressed in a rigorous fashion, which leads essentially to a set of dual integral equations that can be solved through standard numerical procedure. The study focuses on the calculation of stress fields around the borehole with particular attention given to the time-dependent effective tangential stress and pore pressure distributions. Numerical solutions are presented for verification with those recently derived for the limiting case of an isotropic medium and, more importantly, to investigate the influences of material anisotropy on the stress responses of the borehole and porous medium.  相似文献   

10.
11.
It is well known that distribution of displacements through the shell thickness is non-linear, in general. We introduce a modified polar decomposition of shell deformation gradient and a vector of deviation from the linear displacement distribution. When strains are assumed to be small, this allows one to propose an explicit definition of the drilling couples which is proportional to tangential components of the deviation vector. The consistent second approximation to the complementary energy density of the geometrically non-linear theory of isotropic elastic shells is constructed. From differentiation of the density we obtain the consistently refined constitutive equations for 2D surface stretch and bending measures. These equations are then inverted for 2D stress resultants and stress couples. The second-order terms in these constitutive equations take consistent account of influence of undeformed midsurface curvatures. The drilling couples are explicitly expressed by the stress couples, undeformed midsurface curvatures, and amplitudes of quadratic part of displacement distribution through the thickness. The drilling couples are shown to be much smaller than the stress couples, and their influence on the stress and strain state of the shell is negligible. However, such very small drilling couples have to be admitted in non-linear analyses of irregular multi-shell structures, e.g. shells with branches, intersections, or technological junctions. In such shell problems six 2D couple resultants are required to preserve the structure of the resultant shell theory at the junctions during entire deformation process.  相似文献   

12.
The incremental hole-drilling method is frequently used for residual stress depth distribution analyses, due to its fast and economical experimental execution. Depending on the planned use of the component, the drilled hole that is made to measure the residual stress can often be repaired or ignored if it does not affect the intended use of the part. Nevertheless an important experimental issue and assumption is the introduction of an ideal cylindrical hole into the component without additional plastic deformation. Although high-speed drilling is well established the consequences of the resulting hole geometries compared to ideal assumptions are not well known. Therefore, a detailed comparison between different bits and drilling techniques was carried out and is discussed in this paper in order to detect the best experimental conditions and to find out reasons especially for the lack of accuracy of the hole-drilling method for the first increments close to the specimens surface. It comes out that the orbital drilling with common used six-blade bits results in the best compromise of an ideal cylindrical hole and centricity to the center of the strain gage rosette. In the case of conventional drilling the hole geometry differs from the ideal one if six-blade bits were used due to the influence of chamfers at the cutting edges and a non 180° plane end face and also in the case of a two-blade bit due to a non 180° plane end face and the tendency to more eccentric holes. Diamond bits cannot be recommended under all tested conditions due to their geometrical undefined shape.  相似文献   

13.
During drilling of oil and gas wells, drilling muds (a suspension of clay particles in water) are pumped into them. During drilling, the muds perform various functions: They free the borehole from fragments of drilled rock, carry them to the surface, and create pressure on the borehole walls to prevent the entry of oil and gas into the borehole. The solid particles of the mud are deposited on the borehole walls, forming a clay crust, and the liquid phase percolates into the permeable bed. The clay crust represents an inhomogeneous deformable porous medium that is denser near the borehole wall. Knowledge of the properties of clay crusts is very important in practice, since it permits determining certain parameters of the bed; furthermore, the very properties of the clay crust depend on the properties of the drilling muds. In this article we will consider percolation of the drilling mud through the crust. Experimental data are used which show that the permeability and compressibility of the clay crust depend on the stresses acting in the particles of the clay crust. The problem is reduced to a self-similar problem. An ordinary differential equation of the second order is derived for the function in terms of which the stress and other characteristics of the crust are expressed. The distributions of permeability and porosity over the thickness of the crust are found and the quantity of fluid that penetrated into the bed at each instant is also determined.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 70–75, November–December, 1976.  相似文献   

14.
Alegre  J. M.  Díaz  A.  Cuesta  I. I.  Manso  J. M. 《Experimental Mechanics》2019,59(1):79-94
Experimental Mechanics - The Hole-Drilling method is a semi-destructive technique useful for obtaining residual stress distributions by drilling and measuring relieved strains. The standard for...  相似文献   

15.
In this paper, we investigate a low dimensional model of percussive drilling with vibro-impact to mimic the nonlinear dynamics of the bounded progression. Non- holonomity which arises in the stick-slip caused by the impact during drilling fails to be correctly identified via the classical techniques. A reduced model without non-holono- mity is derived by the introduction of a new state variable, of which averaging technique is employed successfully to detect the periodic motions. Local bifurcations are presented directly by using C-L method. Numerical simulations and the penetrating rate analysis along different choices of parame- ters have been carried out to probe the nonlinear behaviour and the optimal penetrating rate of the drilling system.  相似文献   

16.
Focht  G.  Schiffner  K. 《Experimental Mechanics》2003,43(1):97-104
In conjunction with the incremental hole-drilling method, a new evaluation procedure is presented for determining the residual stress state in components. In contrast to the classical method, the whole displacement field around the drilled hole is measured using the electronic speckle pattern interferometry technique. The displacement patterns, measured without contact to the surface, are then correlated with those obtained by finite-element simulations using statistical methods. The simulated displacement patterns, used for calibration purposes, result from the application of properly defined basic loads. In this way, the values and the orientation of the residual stresses can be determined by superposition of these properly scaled and shifted basic loads. Even complex states of stress can be evaluated. The theoretical background and experimental results are presented.  相似文献   

17.
粘弹性大挠度圆板的轴对称弯曲   总被引:4,自引:1,他引:4  
本文探讨粘弹性大挠度圆板的轴对称弯曲的基本方程和求解方法.用半逆解和摄动法分析挠度与膜力,对标准线性固体进行数例计算,并与小挠度理论相比较.全部方程与解答可退化得相应的弹性大挠度板的结果.  相似文献   

18.
Examination of the ring method for determination of residual stresses   总被引:1,自引:0,他引:1  
A semidestructive method for determining residual stresses on the surface of an isotropic material is examined. The method requires that a ring be cut around the point where residual stresses are to be found. Calibration is done by using a specimen with a known residual-stress distribution. Sensitivity of the technique is found to be much better than that of the conventional semidestructive method of hole drilling.  相似文献   

19.
在建立水平井流动方程的基础上,通过气固两相流动基本数学模型的求解数值模拟不同工况条件下的气固混合物冲蚀能量,得出了冲蚀能量的变化规律。算例数值模拟显示:环空速度剖面主要由注气量大小决定,机械钻速的影响不大;相同注气量条件下,机械钻速降低与井下岩屑浓度等比例下降;注气量的增加能提高井眼净化程度,但不如降低机械钻速效果明显;环空总冲蚀能中气体冲蚀能量占绝对主要地位,岩屑冲蚀能量只占极小部分,在相同注气量条件下总冲蚀能量基本相同;岩屑冲蚀能量主要取决于机械钻速,机械钻速越大井底产生岩屑越多冲蚀能力越强,相同机械钻速条件下,较大注气量能提供较大岩屑运移速度,提高了岩屑冲蚀能量。  相似文献   

20.
Nobre  J. P.  Polese  C.  van Staden  S. N. 《Experimental Mechanics》2020,60(4):553-564
Experimental Mechanics - The American standard ASTM E837 presents a standard procedure to determine residual stresses in isotropic materials using the incremental hole drilling technique (IHD). The...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号