首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The thermal conductivity κ and electrical resistivity ρ of a cellular ecoceramic, namely, the SiC/Si biomorphic composite, are measured in the temperature range 5–300 K. The SiC/Si biomorphic composite is fabricated using a cellular biocarbon template prepared from white eucalyptus wood by pyrolysis in an argon atmosphere with subsequent infiltration of molten silicon into empty through cellular channels of the template. The temperature dependences κ(T) and ρ(T) of the 3C-SiC/Si biomorphic composite at a silicon content of ~30 vol % are measured for samples cut out parallel and perpendicular to the direction of tree growth. Data on the anisotropy of the thermal conductivity κ are presented. The behavior of the dependences κ(T) and ρ(T) of the SiC/Si biomorphic composite at different silicon contents is discussed in terms of the results obtained and data available in the literature.  相似文献   

2.
The amplitude and temperature dependences of the Young’s modulus and the internal friction (ultrasonic absorption) of biomorphic carbon, silicon carbide, and SiC/Si composite produced from medium density fiberboard (MDF) by pyrolysis (carbonization), followed by infiltration of molten silicon into the prepared carbon preform have been studied in the temperature range 100–293 K in air and under vacuum. The measurements have been performed by the acoustic resonance method with the use of a composite vibrator for longitudinal vibrations at frequencies of approximately 100 kHz. The data obtained by acoustic measurements of the amplitude dependences of the elastic modulus have been used for evaluating the microplastic properties of samples under study. It has been shown that the Young’s modulus, the decrement of elastic vibrations, and the conventional microyield strength of the MDF samples differ from the corresponding data for previously studied similar materials produced from natural eucalyptus, beech, sapele, and pine woods. In particular, the desorption of environmental molecules at small amplitudes of vibrations, which is typical of biomorphic materials based on natural wood, is almost absent for the MDF samples. The results obtained have been explained by different structures and the influence of pores and other defects, which, to a large extent, determine the mechanical characteristics of the biomaterials under investigation.  相似文献   

3.
The electrical resistivity ρ and the thermopower coefficient α of a SiC/Si biomorphic composite fabricated from a porous carbon matrix [prepared through pyrolysis of wood (white eucalyptus)] by infiltrating molten Si into the empty channels of the matrix were measured in the temperature ranges 100–950 and 100–750 K, respectively. Silicon reacts chemically with the carbon of the matrix to produce 3C-SiC, which, in combination with the excess Si unreacted with carbon, forms the SiC/Si biomorphic composite. The SiC/Si samples studied had a concentration of “excess” Si of ~30 vol % and a porosity of ~13–15 vol %. Measurements of ρ were carried out on samples cut either along (ρ) or across (ρ) the tree growth direction, and α was measured on a sample cut along the tree growth direction.  相似文献   

4.
In the temperature range 100–650 K, the linear expansion coefficient β was measured for the SiC/Si biomorphic composite, a new cellular ecoceramic fabricated from a porous cellular carbon matrix prepared through pyrolysis of wood (white eucalyptus) in an argon ambient with subsequent infiltration of molten Si into the channels of the matrix and the formation of 3C-SiC. The SiC/Si samples studied had an “excess” ~30% volume concentration of Si and a porosity of ~13–15%. The measurements were conducted on samples cut along (β) and across (β) the tree growth direction. The measured values of β(T) of SiC/Si are compared with literature data available for the linear expansion coefficients of Si and 3C-SiC.  相似文献   

5.
The electrical resistivity of Sapele-based biomorphic SiC/Si materials was measured in a wide temperature range from 10 K to room temperature. The samples were fabricated by the reactive infiltration of molten silicon into a carbonized Sapele (African Entandrophragma Cylindricum) wood preform. All the samples studied contained residual Si (10–35 wt %). It was found that the resistivity-temperature (ρ(T)) dependences have semimetallic behavior which becomes very close to linear metallic behavior at 100 < T < 300 K. The obtained values of resistivity were quite low (ρ ≈ 0.002–0.02 Ω cm) and showed strong anisotropy: the resistivity along the wood growth axis was several times lower than that in the perpendicular direction. The extent of this anisotropy was in correlation with the amount of residual Si (and, hence, with the amount of residual porosity) in a sample. The resistivity perpendicular to the wood growth axis drastically increased with the Si content, whereas the resistivity parallel to it was practically independent of the Si content. It is suggested that the presence of residual carbon in the samples and carrier scattering at SiC/Si interphases could determine the observed character of ρ(T) dependences.  相似文献   

6.
The thermal conductivity κ and electrical resistivity ρ of a SiC/Si biomorphic composite were measured at temperatures T = 5–300 K. The composite is a cellular ecoceramic fabricated by infiltrating molten Si into the channels of a cellular carbon matrix prepared via pyrolysis of wood (white eucalyptus) in an argon ambient. The κ(T) and ρ(T) relations were measured on a sample cut along the direction of tree growth. The experimental results obtained are analyzed.  相似文献   

7.
The electrical resistivity ρ of bio-SiC, a highly porous cellular material prepared from a biomorphic composite SiC/Si based on white eucalyptus wood through the chemical removal of silicon, was measured in the temperature range 5–100 K. The electrical resistivity of bio-SiC was found to be anisotropic along and across the cellular pores. The activation energy of charge transfer in bio-SiC was estimated. The measured values of ρ for the SiC/Si biomorphic composite and bio-SiC were used to determine the electrical resistivity ρ and the carrier concentration in silicon, which is one of the constituents of the composite.  相似文献   

8.
The acoustic investigations of the elastic (Young’s modulus) and microplastic properties of a composite material, the SiC/Al-13Si-9Mg biomorphic metal ceramic, were performed. The ceramic was prepared by infiltration of the Al-13Si-9Mg melt into porous silicon carbide derived from wood of two species of trees, beech and sapele. The measurements were performed with a composite piezoelectric vibrator under resonance conditions, with rod-shaped samples vibrated longitudinally at about 100 kHz over a wide range of vibrational strain amplitudes, which included both the linear (amplitude-independent) and nonlinear (microplastic) regions. It was shown that the Young’s modulus and the microplastic properties of the composite are anisotropic and depend substantially on the tree species, particularly when longitudinal vibrations are excited in samples cut along the tree fibers.  相似文献   

9.
The thermal conductivity of bio-SiC, a heavily defected material with specific cellular pores (channels), was studied in the temperature range 5–300 K. The bio-SiC sample was prepared from the SiC/Si biomorphic composite through the chemical removal of silicon. The thermal conductivity of silicon embedded in cellular pores of the SiC/Si biomorphic composite was determined.  相似文献   

10.
The effect of the vibrational strain amplitude on the Young’s modulus and ultrasound absorption (internal friction) of a SiC/Si biomorphic composite prepared by pyrolysis of sapele wood followed by infiltration of silicon were investigated. The studies were conducted in air and in vacuum by the acoustic resonance method with the use of a composite vibrator in longitudinal vibrations at frequencies of about 100 kHz. Measurements performed on sapele wood-based bio-SiC/Si samples revealed a substantial effect of adsorption-desorption of molecules contained in air on the effective elasticity modulus and elastic vibration decrement. Microplastic characteristics of the SiC/Si composites prepared from wood of different tree species were compared.  相似文献   

11.
The specific heat at constant pressure and the velocity of sound in the SiC/Si biomorphic composite prepared from white eucalyptus wood are measured in the range 3.5–65 K and at 77 K, respectively. The heat capacity of the SiC/Si sample under investigation is calculated within three proposed models according to the Kopp-Neumann additivity rule.  相似文献   

12.
Temperature dependences of the Young’s modulus E of wood-derived biomorphic SiC ceramics fabricated through pyrolysis of eucalyptus and oak with subsequent silicon infiltration were studied using electrostatic resonance excitation of longitudinal vibrations. The decrease in E with increasing temperature observed to occur in eucalyptus SiC in the temperature interval 20–1000°C was found to be accompanied by several jumps (splittings) in the resonance frequency, which persist after the sample is heated to 1000°C. The oak-SiC ceramic exhibits only one jump, which vanishes after heating to 1000°C. The observed anomalies are assigned to the presence of defects (including pores) in the materials studied.  相似文献   

13.
Epitaxial 3C-SiC grains are formed at 1190 °C in the top region of silicon, when Si wafers coated by SiO2 are annealed in CO atmosphere. The formed SiC grains are 40-50 nm high and 100 nm wide in cross-section and contain only few defects. Main advantage of the method is that the final structure is free of voids.The above method is further developed for the generation of SiC nanocrystals, embedded in SiO2 on Si, and aligned parallel with the interface. The nanometer-sized SiC grains were grown into SiO2 close to the Si/SiO2 interface by a two-step annealing of oxide covered Si: first in a CO, than in a pure O2 atmosphere. The first (carbonization) step created epitaxial SiC crystallites grown into the Si surface, while the second (oxidation) step moved the interface beyond them. Conventional and high resolution cross-sectional electron microscopy showed pyramidal Si protrusions at the Si/SiO2 interface under the grains. The size of the grains, as well as their distance from the Si/SiO2 interface (peak of pyramids) can be controlled by the annealing process parameters. The process can be repeated and SiC nanocrystals (oriented in the same way) can be produced in a multilevel structure.  相似文献   

14.
The thermal conductivity κ and electrical resistivity ρ of a white-eucalyptus cellular carbon preform used to fabricate silicon-carbide-based (SiC/Si) biomorphic ceramics have been measured in the 5-to 300-K temperature interval. The carbon preform was obtained by pyrolysis (carbonization) of white-eucalyptus wood at 1000°C in an argon ambient. The κ(T) and ρ(T) relations were measured on samples cut along the tree growth direction. The experimental data obtained were processed.  相似文献   

15.
Inhomogeneity of the microplastic strain rate (deformation jumps) of a biomorphic SiC/Al composite under uniaxial compression has been studied by laser interferometry on the nanometer level. The value of strain rate jumps has been calculated from the deviation of the form of separate beats in the interferogram of a deformation from the standard form corresponding to a constant strain rate within one beat. In addition to strain rate oscillations extended by 100–180 nm along the displacement (the variation in the length of the specimen), peaks of small width and amplitude with a distance of 10–20 nm between them are observed, as well as peaks with a width of ∼ 50 nm. These peaks may be associated with the sizes of structural formations of an aluminum alloy (grains, subgrains, precipitates, etc.) or with the sizes of SiC nano- and microcrystals situated separately from large-grain crystals and surrounded by residual carbon. The results of this work offer hope to the possibility of enhancing plasticity and strength of biomorphic composites by increasing the fraction of fine-grain elements (< 1.5 μm) in their structure.  相似文献   

16.
The effect of the vibration strain amplitude on the Young modulus and ultrasonic absorption (internal friction) in biomorphic SiC ceramics is investigated in the temperature range 116–296 K. The biomorphic SiC ceramics is prepared through pyrolysis of eucalyptus with subsequent infiltration of silicon. It is demonstrated that the vibration loading of samples in air and under vacuum is accompanied by a number of unexpected effects. The behavior of the studied ceramics is governed by at least two mechanisms, which, to a large extent, are responsible for the elastic and inelastic properties of the material. One mechanism is associated with the adsorption-desorption of environmental molecules (hypothetically, owing to the presence of pores and residual carbon), and the other mechanism involves microplastic deformation due to the motion of dislocations or other (similar) structural units.  相似文献   

17.
A study has been made of the dependences of the electrical resistivity and the Hall coefficient on the temperature and magnetic field for the SiC/Si composite fabricated from spanish beech wood and bio-SiC, a high-porosity material formed by chemical extraction of silicon from this composite. The main charge transport parameters of these materials have been determined and analyzed. It has been shown that electric transport in bio-SiC is effected by n-type carriers with a high concentration of ~1019 cm?3 and a low mobility of ~1 cm2 V?1 s?1. The relations obtained have been analyzed by invoking the theory of quantum corrections to conductivity.  相似文献   

18.
The heat capacity of biomorphic silicon carbide, a high-porosity material with specific cellular pores, is measured in the temperature range 3.5–60 K. Biomorphic silicon carbide is prepared by the chemical removal of excess silicon from the SiC/Si biomorphic composite, a product of eucalyptus wood. It is shown that the major contribution to the heat capacity of biomorphic SiC comes from surface vibrational modes.  相似文献   

19.
This paper reports on measurement of the heat capacity at constant pressure C p of silicon bio-carbide prepared within the 5–300 K temperature interval from beech tree wood (bio-SiC(BE)), and within 80–300 K, from tree wood of sapele (bio-SiC(SA)), as well as SiC/Si ecoceramics of beech, sapele, and white eucalyptus wood. It has been shown that in bio-SiC(BE) the measured heat capacity contains a significant contribution of surface heat capacity, whose magnitude decreases with increasing temperature. Of the ecoceramics, only SiC/Si(SA) characterized by a high enough porosity has revealed a small contribution to the heat capacity coming from its surface component. The experimental results obtained are discussed.  相似文献   

20.
The amplitude, temperature, and time dependences of the Young’s modulus and internal friction (ultrasonic attenuation) of a eucalyptus-based carbon biomatrix intended for preparing biomorphic silicon carbide ceramics were studied. Adsorption and desorption of molecules of the ambient medium (air) was shown to determine, to a considerable extent, the effective Young’s modulus and acoustic vibration decrement of a specimen. A doublet maximum in the temperature dependence of ultrasonic attenuation was observed at a temperature close to the sublimation temperature of solid CO2. The microplastic properties of the material were estimated from acoustic measurement data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号