首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
We show that X-ray magnetic circular dichroism (XMCD) can be employed to probe the oxidation states and other electronic structural features of nickel active sites in proteins. As a calibration standard, we have measured XMCD and X-ray absorption (XAS) spectra for the nickel(II) derivative of Pseudomonas aeruginosa azurin (NiAz). Our analysis of these spectra confirms that the electronic ground state of NiAz is high-spin (S = 1); we also find that the L(3)-centroid energy is 853.1(1) eV, the branching ratio is 0.722(4), and the magnetic moment is 1.9(4) mu(B). Density functional theory (DFT) calculations on model NiAz structures establish that orbitals 3d(x2-y2) and 3d(z2) are the two valence holes in the high-spin Ni(II) ground state, and in accord with the experimentally determined orbital magnetic moment, the DFT results also demonstrate that both holes are highly delocalized, with 3d(x2-y2) having much greater ligand character.  相似文献   

2.
3.
Two novel heterobimetallic complexes of formula [Cr(bpy)(ox)(2)Co(Me(2)phen)(H(2)O)(2)][Cr(bpy)(ox)(2)]·4H(2)O (1) and [Cr(phen)(ox)(2)Mn(phen)(H(2)O)(2)][Cr(phen)(ox)(2)]·H(2)O (2) (bpy = 2,2'-bipyridine, phen = 1,10-phenanthroline, and Me(2)phen = 2,9-dimethyl-1,10-phenanthroline) have been obtained through the "complex-as-ligand/complex-as-metal" strategy by using Ph(4)P[CrL(ox)(2)]·H(2)O (L = bpy and phen) and [ML'(H(2)O)(4)](NO(3))(2) (M = Co and Mn; L' = phen and Me(2)phen) as precursors. The X-ray crystal structures of 1 and 2 consist of bis(oxalato)chromate(III) mononuclear anions, [Cr(III)L(ox)(2)](-), and oxalato-bridged chromium(III)-cobalt(II) and chromium(III)-manganese(II) dinuclear cations, [Cr(III)L(ox)(μ-ox)M(II)L'(H(2)O)(2)](+)[M = Co, L = bpy, and L' = Me(2)phen (1); M = Mn and L = L' = phen (2)]. These oxalato-bridged Cr(III)M(II) dinuclear cationic entities of 1 and 2 result from the coordination of a [Cr(III)L(ox)(2)](-) unit through one of its two oxalato groups toward a [M(II)L'(H(2)O)(2)](2+) moiety with either a trans- (M = Co) or a cis-diaqua (M = Mn) configuration. The two distinct Cr(III) ions in 1 and 2 adopt a similar trigonally compressed octahedral geometry, while the high-spin M(II) ions exhibit an axially (M = Co) or trigonally compressed (M = Mn) octahedral geometry in 1 and 2, respectively. Variable temperature (2.0-300 K) magnetic susceptibility and variable-field (0-5.0 T) magnetization measurements for 1 and 2 reveal the presence of weak intramolecular ferromagnetic interactions between the Cr(III) (S(Cr) = 3/2) ion and the high-spin Co(II) (S(Co) = 3/2) or Mn(II) (S(Mn) = 5/2) ions across the oxalato bridge within the Cr(III)M(II) dinuclear cationic entities (M = Co and Mn) [J = +2.2 (1) and +1.2 cm(-1) (2); H = -JS(Cr)·S(M)]. Density functional electronic structure calculations for 1 and 2 support the occurrence of S = 3 Cr(III)Co(II) and S = 4 Cr(III)Mn(II) ground spin states, respectively. A simple molecular orbital analysis of the electron exchange mechanism suggests a subtle competition between individual ferro- and antiferromagnetic contributions through the σ- and/or π-type pathways of the oxalato bridge, mainly involving the d(yz)(Cr)/d(xy)(M), d(xz)(Cr)/d(xy)(M), d(x(2)-y(2))(Cr)/d(xy)(M), d(yz)(Cr)/d(xz)(M), and d(xz)(Cr)/d(yz)(M) pairs of orthogonal magnetic orbitals and the d(x(2)-y(2))(Cr)/d(x(2)-y(2))(M), d(xz)(Cr)/d(xz)(M), and d(yz)(Cr)/d(yz)(M) pairs of nonorthogonal magnetic orbitals, which would be ultimately responsible for the relative magnitude of the overall ferromagnetic coupling in 1 and 2.  相似文献   

4.
In the present work we investigate the adequacy of broken-symmetry unrestricted density functional theory for constructing the potential energy curve of nickel dimer and nickel hydride, as a model for larger bare and hydrogenated nickel cluster calculations. We use three hybrid functionals: the popular B3LYP, Becke's newest optimized functional Becke98, and the simple FSLYP functional (50% Hartree-Fock and 50% Slater exchange and LYP gradient-corrected correlation functional) with two basis sets: all-electron (AE) Wachters+f basis set and Stuttgart RSC effective core potential (ECP) and basis set. We find that, overall, the best agreement with experiment, comparable to that of the high-level CASPT2, is obtained with B3LYP/AE, closely followed by Becke98/AE and Becke98/ECP. FSLYP/AE and B3LYP/ECP give slightly worse agreement with experiment, and FSLYP/ECP is the only method among the ones we studied that gives an unacceptably large error, underestimating the dissociation energy of Ni(2) by 28%, and being in the largest disagreement with the experiment and the other theoretical predictions. We also find that for Ni(2), the spin projection for the broken-symmetry unrestricted singlet states changes the ordering of the states, but the splittings are less than 10 meV. All our calculations predict a deltadelta-hole ground state for Ni(2) and delta-hole ground state for NiH. Upon spin projection of the singlet state of Ni(2), almost all of our calculations: Becke98 and FSLYP both AE and ECP and B3LYP/AE predict (1)(d(A)(x(2)-y(2)d(B)(x(2)-y(2)) or (1)(d(A)(xy) (d)(B)(xy)) ground state, which is a mixture of (1)Sigma(g) (+) and (1)Gamma(g). B3LYP/ECP predicts a (3)(d(A)(x(2)-y(2))d(B)(xy) (mixture of (3)Sigma(g) (-) and (3)Gamma(u)) ground state virtually degenerate with the (1)(d(A)(x(2)-y(2)d(B)(x)(2)-y(2)/(1)(d(A)(xy)D(B)(xy) state. The doublet delta-hole ground state of NiH predicted by all our calculations is in agreement with the experimentally predicted (2)Delta ground state. For Ni(2), all our results are consistent with the experimentally predicted ground state of 0(g) (+) (a mixture of (1)Sigma(g) (+) and (3)Sigma(g) (-)) or 0(u) (-) (a mixture of (1)Sigma(u) (-) and (3)Sigma(u) (+)).  相似文献   

5.
Belinsky MI 《Inorganic chemistry》2006,45(22):9096-9106
Valence delocalization in the [Cu3(7+)] trimer is considered in the model of the double-exchange coupling, in which full delocalization corresponds to the migration of the single d(x2-y2) hole and relatively strong isotropic double-exchange coupling. Strong double exchange results in the pairing of the individual spins in the delocalized trimer even at room temperature. The model explains the delocalized singlet 1A1 ground state in the planar Cu3(mu3-O) core by strong double exchange with positive double-exchange parameter t(0), whereas the delocalized triplet ground state of the [Cu3(7+)] trimer, which was observed in the Cu3(mu3-S)2 cluster, may be explained by the double exchange with relatively weak positive t(0): 0 < t(0) < 2J (degenerate 3E ground state) or negative t(0) (triplet 3A2 ground state). An analysis of the splitting of the delocalized degenerate 3E term requires inclusion of the antisymmetric double-exchange interaction, which takes into account the spin-orbit coupling in the double-exchange model. The cluster parameter KZ of the antisymmetric double-exchange coupling is proportional to t(0) and anisotropy of the g factor Deltag(parallel)[Cu(II)], KZ < t(0). Antisymmetric double exchange is relatively large in the [Cu3(7+)] cluster with the d(x2-y2) magnetic orbitals lying in the Cu3 plane [Cu3(mu3-O) core], whereas for the d(x2-y2) magnetic orbitals lying in the plane perpendicular to Cu3, antisymmetric double-exchange coupling is weak [Cu3(mu3-S)2 cluster]. The antisymmetric double-exchange coupling results in the linear zero-field splitting DeltaK = 2[equation: see text]KZ (approximately t(0)) of the delocalized degenerate 3E term that leads to strong anisotropy of the Zeeman splittings in the external magnetic field and a complex electron paramagnetic resonance (EPR) spectrum. The delocalized model of hyperfine interaction explains the hyperfine structure [10 hyperfine lines with the relative intensities 1:3:6:10:12:12:10:6:3:1 and the interval a/3] of the EPR transitions in the triplet states that was observed in the EPR spectra of the Cu3(mu3-S)2 cluster.  相似文献   

6.
EPR of Cu(II) doped, low symmetry Co(II)-thiabendazole complex [Co(tbz)2(NO3)(H2O)](NO3) is investigated at 300 K. The spin Hamiltonian parameters are found to be orthorhombic with g33=2.305, g22=2.1351, g11=2.0626 and A33=147.0 x 10(-4), A22=33.5 x 10(-4) and A11=23.1 x 10(-4) cm(-1). Computer simulation of isofrequency plots reveal that the Cu(II) ions is substitutionally incorporated in the host lattice. Angular variation of the spectra shows the presence of two magnetic sites in the lattice. The low magnitude of A33 of the complex is rationalized in terms of admixture of d(x2-y2)/d(z2) ground state and delocalization of unpaired spin density onto the ligands.  相似文献   

7.
Tetranuclear [Co-Gd](2) complexes were prepared by using trianionic ligands possessing amide, imine, and phenol functions. The structural determinations show that the starting cobalt complexes present square planar or square pyramid environments that are preserved in the final tetranuclear [Co-Gd](2) complexes. These geometrical modifications of the cobalt coordination spheres induce changes in the cobalt spin ground states, going from S = 1/2 in the square planar to S = 3/2 for the square pyramid environments. Depending on the ligand, the complexes display antiferromagnetic or ferromagnetic Co(II)-Gd(III) interactions. The temperature dependence of the magnetic susceptibility-temperature products indicate that the Co-Gd interaction is ferromagnetic when high spin Co ions are concerned and antiferromagnetic in the case of low spin Co ions. This different magnetic behavior can be explained if we observe that the singly occupied σ d(x(2)-y(2)) orbital is populated (S = 3/2 Co ions) or unoccupied (S = 1/2 Co ions). Such an observation furnishes invaluable information for the understanding of the more general 3d-4f magnetic interactions.  相似文献   

8.
9.
The complexes [(L)(2)Ni(II)(2)M(II)(mu(2)-1,3-OAc)(2)(mu(2)-1,1-OAc)(2)(S)(2)] x xMeOH [HL = N-methyl-N-(2-hydroxybenzyl)-2-aminoethyl-2-pyridine; M = Ni, S = MeOH, x = 6 (1); M = Mn, S = H(2)O, x = 0 (2); M = Co, S = MeOH, x = 6 (3)] have been synthesized. Crystal structures reveal that three octahedral MII ions form a linear array with two terminal moieties {(L)Ni(II)(mu(2)-1,3-OAc)(mu(2)-1,1-OAc)(MeOH/H(2)O)}(-) in a facial donor set and a central MII ion which is connected to the terminal ions via bridging phenolate and two types of bridging acetates. Magnetic measurements reveal that the Ni(II)(3) and Ni(II)(2)Co(II) centers are ferromagnetically and Ni(II)(2)Mn(II) center is antiferromagnetically coupled. An attempt has been made to rationalize the observed magneto-structural behavior.  相似文献   

10.
Local density and generalized gradient approximation time-dependent density functional methods have been used for calculation of the singlet and triplet excited states of nickel-porphine, Ni-tetraphenyloporphine, and Ni-octaethyloporphyrine. Special attention is paid to metal-ligand transitions and d-d transitions. It is shown that the lowest exited singlet states of the three compounds can be described as a transfer of an electron from the porphine ring to the d(x2-y2) orbital of the nickel atom. On the other hand, the lowest excited triplet state arises from promotion of an electron between two nickel d orbitals, an occupied d(z2) and an empty d(x2-y2). It is proposed that a rapid quenching of the excited singlet states is due to an ultrafast intersystem crossing between 1Eg)and 3Eg or 3B1g states.  相似文献   

11.
A series of bis(alpha-iminopyridine)metal complexes featuring the first-row transition ions (Cr, Mn, Fe, Co, Ni, and Zn) is presented. It is shown that these ligands are redox noninnocent and their paramagnetic pi radical monoanionic forms can exist in coordination complexes. Based on spectroscopic and structural characterizations, the neutral complexes are best described as possessing a divalent metal center and two monoanionic pi radicals of the alpha-iminopyridine. The neutral M(L*)2 compounds undergo ligand-centered, one-electron oxidations generating a second series, [(L(x))2M(THF)][B(ArF)4] [where L(x) represents either the neutral alpha-iminopyridine (L)0 and/or its reduced pi radical anion (L*)-]. The cationic series comprise mostly mixed-valent complexes, wherein the two ligands have formally different redox states, (L)0 and (L*)-, and the two ligands may be electronically linked by the bridging metal atom. Experimentally, the cationic Fe and Co complexes exhibit Robin-Day Class III behavior (fully delocalized), whereas the cationic Zn, Cr, and Mn complexes belong to Class I (localized) as shown by X-ray crystallography and UV-vis spectroscopy. The delocalization versus localization of the ligand radical is determined only by the nature of the metal linker. The cationic nickel complex is exceptional in this series in that it does not exhibit any ligand mixed valency. Instead, its electronic structure is consistent with two neutral ligands (L)0 and a monovalent metal center or [(L)2Ni(THF)][B(ArF)4]. Finally, an unusual spin equilibrium for Fe(II), between high spin and intermediate spin (S(Fe) = 2 <--> S(Fe) = 1), is described for the complex [(L*)(L)Fe(THF)][B(ArF)4], which consequently is characterized by the overall spin equilibrium (S(tot) = 3/2 <--> S(tot) = 1/2). The two different spin states for Fe(II) have been characterized using variable temperature X-ray crystallography, EPR spectroscopy, zero-field and applied-field M?ssbauer spectroscopy, and magnetic susceptibility measurements. Complementary DFT studies of all the complexes have been performed, and the calculations support the proposed electronic structures.  相似文献   

12.
The octanuclear aggregates M(8)(mu(4)-O)(2)(O(2)CN(i)()Pr(2))(12) [M = Mn(II) 1, Co(II) 2, Ni(II) 3] have been prepared in good yields by controlled hydrolysis of the corresponding metal carbamate precursors [M(O(2)CN(i)()Pr(2))(2)](n)(). X-ray analysis has shown compounds 1-3 to be isostructural. The core of 2 contains two distorted [M(4)O] tetrahedra related by an inversion center. The hexanuclear carbamates M(6)(O(2)CNEt(2))(12) in toluene undergo a metal redistribution process with formation of the hexanuclear carbamates M'(x)M' '(6-x)(O(2)CNEt(2))(12), M' = Co, M' ' = Mn, as evidenced by mass-spectrometric data. In the presence of moisture, the mixed octanuclear carbamates Co(x)Mn(6-x)(MnO)(CoO)(O(2)CNEt(2))(12) were promptly formed and detected by DCI/MS measurements. Mass spectral data of Co(8)(mu(4)-O)(2)(O(2)CN(i)Pr(2))(12) are also reported.  相似文献   

13.
We have prepared a series of divalent cobalt(II) complexes supported by the [PhBP(3)] ligand ([PhBP(3)] = [PhB(CH(2)PPh(2))(3)](-)) to probe certain structural and electronic phenomena that arise from this strong field, anionic tris(phosphine) donor ligand. The solid-state structure of the complex [PhBP(3)]CoI (1), accompanied by SQUID, EPR, and optical data, indicates that it is a pseudotetrahedral cobalt(II) species with a doublet ground state-the first of its type. To our knowledge, all previous examples of 4-coordinate cobalt(II) complexes with doublet ground states have adopted square planar structure types. Complex 1 provided a useful precursor to the corresponding bromide and chloride complexes, ([PhBP(3)]Co(mu-Br))(2), (2), and ([PhBP(3)]Co(mu-Cl))(2), (3). These complexes were similarly characterized and shown to be dimeric in the solid-state. In solution, however, the monomeric low spin form of 2 and 3 dominates at 25 degrees C. There is spectroscopic evidence for a temperature-dependent monomer/dimer equilibrium in solution for complex 3. Furthermore, the dimers 2 and 3 did not display appreciable antiferromagnetic coupling that is typical of halide and oxo-bridged copper(II) and cobalt(II) dimers. Rather, the EPR and SQUID data for solid samples of 2 and 3 suggest that they have triplet ground states. Complexes 1, 2, and 3 are extremely oxygen sensitive. Thus, stoichiometric oxidation of 1 by dioxygen produced the 4-coordinate, high spin complex [PhB(CH(2)P(O)Ph(2))(2)(CH(2)PPh(2))]CoI, (4), in which the [PhBP(3)] ligand had undergone a 4-electron oxidation. Reaction of 1 with TlOAr (Ar = 2,6-Me(2)Ph) afforded an example of a 4-coordinate, high spin complex, [PhBP(3)]Co(O-2,6-Me(2)Ph) (5), with an intact [PhBP(3)] ligand. The latter two complexes were spectroscopically and structurally characterized for comparison to complexes 1, 2, and 3. Our data for these complexes collectively suggest that the [PhBP(3)] ligand provides an unusually strong ligand-field to these divalent cobalt complexes that is chemically distinct from typical tris(phosphine) donor ligand sets, and distinct from tridentate borato ligands that have been previously studied. Coupling this strong ligand-field with a pronounced axial distortion away from tetrahedral symmetry, a geometric consequence that is enforced by the [PhBP(3)] ligand, provides access to monomeric [PhBP(3)]CoX complexes with doublet rather than quartet ground states.  相似文献   

14.
The first azide(mu1,1)-bridged binuclear cobalt(II) complex with a chelated imino nitroxide radical, [Co2(immepy)2(N3)(4)].2EtOH, was structurally and magnetically characterized, where immepy = 4,4,5,5-tetramethyl-2-(6'-methyl-2'-pyridyl) imidazoline-1-oxyl. Five nitrogen atoms complete the coordination sphere of the Co(II) ion, showing a distorted trigonal bipyramid geometry. Two N(3)(-) anions act as bridges between cobalt ions in the mu1,1 coordination mode, resulting in a binuclear structure with an inversion center. Magnetic studies show that ferromagnetic couplings occurred between the adjacent cobalt(II) ions through N3(-)(mu1,1)) bridges, and antiferromagnetic couplings between the cobalt(II) ions and organic radicals.  相似文献   

15.
The microscopic origin of the in-plane (Gx, Gy) and out-of-plane (Gz) Dzialoshinsky-Moriya (DM) exchange parameters is considered for the Cu3(II) clusters. For the systems with the d(x2-y2) ground state of the Cu ions, only Z components of the pair DM exchange parameters are active (Gz not equal to 0, G(x,y) = 0) in the cases of the orientations of the local anisotropy axes zi| (zi||Z) and perpendicular (zi perpendicular Z, xi||(- Z)) to the molecular trigonal Z axis. The dependences of the Gx, Gy, and Gz DM exchange parameters on the tilt of the local magnetic orbitals were obtained for the antiferromagnetic (AFM) clusters with the d(x2-y2) and d(z2) ground state of the Cu ions. The tilt of the local d(x2-y2) orbitals results in the change of the Gz parameter and appearance of the in-plane DM exchange interactions (Gx or/and Gy parameters). The dependence of the Gz and Gx,Gy DM exchange parameters on the tilt angle is essentially different. The in-plane DM exchange coupling (Gx,Gy parameters) can significantly exceed the out-of-plane DM coupling (Gz parameter). The nonzero Gz and Gx,Gy parameters can be positive or negative. For the {Cu3} nanomagnet with the d(x2-y2) ground state and relatively strong DM coupling, the model explains the three DM exchange parameters of the same value (|Gz| = |Gx| = |Gy|) by the small tilt of the local anisotropy axes zi of the CuO4 local groups of the trimer from the positions zi perpendicular Z. The dependence of the DM exchange parameters (Gz, Gx, Gy) on the tilt for the AFM Cu3 clusters with the d(z2) ground states of the Cu ions differs significantly from that for the AFM systems with the ground state d(x2-y2) of the individual ions. Large in-plane DM exchange parameters Gx or/and Gy result in the mixing of the 2(S = 1/2) and S = 3/2 states and zero-field splitting (ZFS) 2D(DM) of the excited S = 3/2 state. The DM exchange contribution 2D(DM) to ZFS of the excited S = 3/2 state possesses the significant dependence on the tilt of the local magnetic orbitals.  相似文献   

16.
Synthesis (hydrothermal and metathesis), characterization (UV-vis, IR, TG/DTA), single-crystal X-ray structures, and magnetic properties of three cobalt(II)-pyromellitate complexes, purple [Co(2)(pm)](n) (1), red [Co(2)(pm)(H(2)O)(4)](n) x 2nH(2)O (2), and pink [Co(H(2)O)(6)](H(2)pm) (3) (H(4)pm = pyromellitic acid (1,2,4,5-benzenetetracarboxylic acid)), are described. 1 consists of one-dimensional chains of edge-sharing CoO(6) octahedra that are connected into layers via O-C-O bridges. The layers are held together by the pyromellitate (pm(4-)) backbone to give a three-dimensional structure, each ligand participating in an unprecedented 12 coordination bonds (Co-O) to 10 cobalt atoms. 2 consists of a three-dimensional coordination network possessing cavities in which unbound water molecules reside. This highly symmetric network comprises eight coordinate bonds (Co-O) between oxygen atoms of pm(4-) to six trans-Co(H(2)O)(2). 3 possesses a hydrogen-bonded sandwich structure associating layers of [Co(H(2)O)(6)](2+) and planar H(2)pm(2-). The IR spectra, reflecting the different coordination modes and charges of the pyromellitate, are presented and discussed. The magnetic properties of 1 indicate complex behavior with three ground states (collinear and canted antiferromagnetism and field-induced ferromagnetism). Above the Néel temperature (T(N)) of 16 K it displays paramagnetism with short-range ferromagnetic interactions (Theta = +16.4 K, mu(eff) = 4.90 mu(B) per Co). Below T(N) a weak spontaneous magnetization is observed at 12.8 K in low applied fields (H < 100 Oe). At higher fields (H > 1000 Oe) metamagnetic behavior is observed. Two types of hysteresis loops are observed; one centered about zero field and the second about the metamagnetic critical field. The critical field and the hysteresis width increase as the temperature is lowered. The heat capacity data suggest that 1 has a 2D or 3D magnetic lattice, and the derived magnetic entropy data confirm an anisotropic s(eff) = 1/2 for the cobalt(II) ion. Magnetic susceptibility data indicate that 2 and 3 are paramagnets.  相似文献   

17.
In this article we report for the first time experimental details concerning the synthesis and full characterization (including the single-crystal X-ray structure) of the spin-canted zigzag-chain compound [Co(H2L)(H2O)]infinity [L = 4-Me-C6H4-CH2N(CPO3H2)2], which contains antiferromagnetically coupled, highly magnetically anisotropic Co(II) ions with unquenched orbital angular momenta, and we also propose a new model to explain the single-chain magnet behavior of this compound. The model takes into account (1) the tetragonal crystal field and the spin-orbit interaction acting on each Co(II) ion, (2) the antiferromagnetic Heisenberg exchange between neighboring Co(II) ions, and (3) the tilting of the tetragonal axes of the neighboring Co units in the zigzag structure. We show that the tilting of the anisotropy axes gives rise to spin canting and consequently to a nonvanishing magnetization for the compound. In the case of a strong tetragonal field that stabilizes the orbital doublet of Co(II), the effective pseudo-spin-1/2 Hamiltonian describing the interaction between the Co ions in their ground Kramers doublet states is shown to be of the Ising type. An analytical expression for the static magnetic susceptibility of the infinite spin-canted chain is obtained. The model provides an excellent fit to the experimental data on both the static and dynamic magnetic properties of the chain.  相似文献   

18.
Lozan V  Kersting B 《Inorganic chemistry》2006,45(14):5630-5634
The ability of the dinuclear Co(II) complex [(L(Me))Co(II)2(mu-Cl)]+ [1; (L(Me))2- = 3,6,9,17,20,23-hexamethyl-3,6,9,17,20,23-hexaaza-29,30-dithiol-13,27-di-tert-butyltricyclo[23.3.1(11.15)]triaconta-1(28),11,13,15(30),25,26-hexaene] to bind tetrahedral oxoanions of the transition metal has been investigated. Two new complexes, [(L(Me))Co(II)2(mu-MoO4)] (2) and [(L(Me))Co(II)2(mu-MoO3(OMe))]2[Mo4O10(OMe)6] (3), were prepared by substitution reactions of 1 with (n-Bu4N)2MoO4 in MeCN or with MoO3 x 2 H2O/NEt3 in MeOH. Both compounds were characterized by X-ray crystallography. The dioctahedral complex 2 features a mu(1,3)-bridging MoO4(2-) unit, whereas the cation in 3 hosts an unprecedented mu(1,3)-MoO3(OMe)- motif, demonstrating that four-coordinate molybdate esters can be stabilized in the binding pocket of the bowl-shaped [(L(Me))Co(II)2]2+ complex. The results of IR, UV/vis, and cyclic voltammetry measurements are also reported.  相似文献   

19.
MRCI results are reported for the vertical excitation energies (VEE) and oscillator strengths f of doublet states of OClO up to 11 eV, including 3b(1) → 4s, 4p, 3d, 5s, 5p, 4d, and most 1a(2), 8a(1), 5b(2) → 4s and 4p Rydberg states. The lowest Rydberg states 3b(1) → 4s and 3b(1) → 4p(x) have mixed valence-Rydberg character. The observed spectral bands were reassigned to include valence states which have generally higher oscillator strengths. The well-known valence state 1(2)A(2) has a VEE of 3.63 eV, and a relatively high f of 0.042. Overall, the calculated oscillator strengths are in good agreement with measured values. The lowest quartet state, 1(4)B(2), lies at 6.95 eV. Quartet Rydberg states start with 1a(2) → 4s at 9.28 eV. According to calculated vertical ionization potentials (VIP) of OClO, the second VIP at 12.59 eV is reassigned from 1(3)B(1) to 1(3)B(2) (ionization from 1a(2), rather than 8a(1)), and the third VIP at 12.63 eV from 1(1)B(1) to 1(3)B(1) (ionization from 8a(1)). Vertical electron detachment energies of OClO(-) have been calculated up to 8.9 eV. There is good agreement with experimental values.  相似文献   

20.
R(33)Fe(14-x)Al(x+y)B(25-y)C(34) (R = La or Ce; x ≤ 0.9; y ≤ 0.2) and R(33)Fe(13-x)Al(x)B(18)C(34) (R = Ce or Pr; x < 0.1) were synthesized from reactions of iron with boron, carbon, and aluminum in R-T eutectic fluxes (T = Fe, Co, or Ni). These phases crystallize in the cubic space group Im3m (a = 14.617(1) ?, Z = 2, R(1) = 0.0155 for Ce(33)Fe(13.1)Al(1.1)B(24.8)C(34), and a = 14.246(8) ?, Z = 2, R(1) = 0.0142 for Ce(33)Fe(13)B(18)C(34)). Their structures can be described as body-centered cubic arrays of large Fe(13) or Fe(14) clusters which are capped by borocarbide chains and surrounded by rare earth cations. The magnetic behavior of the cerium-containing analogs is complicated by the possibility of two valence states for cerium and possible presence of magnetic moments on the iron sites. Temperature-dependent magnetic susceptibility measurements and M?ssbauer data show that the boron-centered Fe(14) clusters in Ce(33)Fe(14-x)Al(x+y)B(25-y)C(34) are not magnetic. X-ray photoelectron spectroscopy data indicate that the cerium is trivalent at room temperature, but the temperature dependence of the resistivity and the magnetic susceptibility data suggest Ce(3+/4+) valence fluctuation beginning at 120 K. Bond length analysis and XPS studies of Ce(33)Fe(13)B(18)C(34) indicate the cerium in this phase is tetravalent, and the observed magnetic ordering at T(C) = 180 K is due to magnetic moments on the Fe(13) clusters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号