首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A very effective tool, namely, the analytical expression of the fractional parentage coefficients (FPC), is introduced in this paper to deal with the total spin states of N-body spinor bosonic systems, where N is supposed to be large and the spin of each boson is one. In particular, the analytical forms of the one-body and two-body FPC for the total spin states with {N} and {N−1,1} permutation symmetries have been derived. These coefficients facilitate greatly the calculation of related matrix elements, and they can be used even in the case of N→∞. They appear as a powerful tool for the establishment of an improved theory of spinor Bose-Einstein condensation, where the eigenstates have the total spin S and its Z-component being both conserved.  相似文献   

2.
Universality for the Distance in Finite Variance Random Graphs   总被引:1,自引:1,他引:0  
We generalize the asymptotic behavior of the graph distance between two uniformly chosen nodes in the configuration model to a wide class of random graphs. Among others, this class contains the Poissonian random graph, the expected degree random graph and the generalized random graph (including the classical Erdős-Rényi graph). In the paper we assign to each node a deterministic capacity and the probability that there exists an edge between a pair of nodes is equal to a function of the product of the capacities of the pair divided by the total capacity of all the nodes. We consider capacities which are such that the degrees of a node have uniformly bounded moments of order strictly larger than two, so that, in particular, the degrees have finite variance. We prove that the graph distance grows like log  ν N, where the ν depends on the capacities and N denotes the size of the graph. In addition, the random fluctuations around this asymptotic mean log  ν N are shown to be tight. We also consider the case where the capacities are independent copies of a positive random Λ with , for some constant c and τ>3, again resulting in graphs where the degrees have finite variance. The method of proof of these results is to couple each member of the class to the Poissonian random graph, for which we then give the complete proof by adapting the arguments of van der Hofstad et al. (Random Struct. Algorithms 27(2):76–123, 2005).  相似文献   

3.
We prove that the N particles approximation of a class of stable stationary solutions of the Vlasov equation is uniformly valid on a time scale N β for β>0 (explicitly given in various cases) much longer than the usual log N scale. The vortex blob method in dimension 2 is also discussed. The result applies to a class of stationary solutions more general than in a previous work.  相似文献   

4.
The position and momentum space information entropies of weakly interacting trapped atomic Bose–Einstein condensates and spin-polarized trapped atomic Fermi gases at absolute zero temperature are evaluated. We find that sum of the position and momentum space information entropies of these quantum systems containing N atoms confined in a D( ≤ 3)-dimensional harmonic trap has a universal form as St(D) = N(a D - b lnN) S_\mathrm{t}^{(D)} = N(a D - b \ln N) , where a ≃ 2.332 and b = 2 for interacting bosonic systems and a ≃ 1.982 and b = 1 for ideal fermionic systems. These results obey the entropic uncertainty relation given by Beckner, Bialynicki-Birula and Myceilski.  相似文献   

5.
We express the density matrix for the N-qubit symmetric state or spin-j state (j = N/2) in terms of the well-known Fano statistical tensor parameters. Employing the multi-axial representation, where the spin-j density matrix is shown to be characterized by j(2j + 1) axes and 2j real scalars, we enumerate the number of invariants constructed out of these axes and scalars. We calculate these invariants explicitly in the particular case of the pure and mixed spin-1 state.  相似文献   

6.
We have used the Breit-Wigner resonance model with S 11, P 11, and P 13 resonances in the s-channel to reanalyze the old πNKΛ data with the aim to establish the origin of the prominent structure in the total cross section in the vicinity of 1700 MeV. We have found a new set of resonance parameters enforcing the experimentally observed structure of the total cross-section data simultaneously with the linear dependence of the differential cross sections with cos θ in the energy range 1650 MeV < W < 1800 MeV. Owing to the differential cross-section linearity, the P 13 partial wave has been strongly attenuated in this model, and the total cross-section structure is attributed to the resonant behavior of the P 11 partial wave. In this paper we show that, at least in the Breit-Wigner resonance model, it is not possible to achieve a detailed reproduction of the narrow 1700 MeV total cross-section peak using the standard partial widths. To understand the phenomenon, a much narrower width of a resonant state, the N(1710) P 11 in our case, is required (Γ ≈ 68 MeV), but then the agreement of the model predictions with the total cross-section data at higher energies is lost. One way out is to allow for the existence of another P 11 resonance in that energy range. The same feature is shown by the polarization data: The introduction of a much narrower resonance spoils the level of agreement which the Breit-Wigner resonance model is able to achieve with experiment, but the consistency is restored when another resonance is introduced. Analyzing the qqq or qqqq nature of the recommended narrow P 11 structure in the neighborhood of 1700 MeV we reopen (remind of) the possibility that another P 11 resonant state exists in addition to the standard N(1710) P 11 PDG-resonance, and that one of the two states can be identified with the yet undiscovered cryptoexotic pentaquark state. To clarify the situation, we strongly recommend a remeasurement of the πNKΛ process in the energy range 1650 MeV < W < 1800 MeV.  相似文献   

7.
The present work reviews the properties of the neutron-rich isotopes near the closed shells N = 20 and N = 28. The changes in nuclear structure appearing as one goes away from the β-stability line are discussed. The location of the neutron drip line and questions about the stability of nuclides with Z ≥ 8 are considered in connection with the weakening or even vanishing of the shell effects at the magic numbers 20 and 28, and the discovery of the new neutron magic numbers at N = 16 and N = 32. These properties are extremely interesting from the point of view of laser experiments as well as for all other experimental methods giving access to this region.  相似文献   

8.
 Using the generalized Pauli principle by adding particle labels to the usual space and spin labels a symmetric Hamiltonian and a corresponding antisymmetric wave function are constructed for systems of three baryons in the strangeness sectors S = −1 and −2. Applications are the ΞNN-ΛΛN and NNΛ-NNΣ systems. Minimal sets of generalized coupled Faddeev equations for breakup and rearrangement operators as well as (possible) bound states are derived that have the ordinary Pauli principle for identical particles built in. The equations found confirm our previous sets of coupled Faddeev equations whose derivation was made for distinguishable particles and not using the generalized Pauli principle. Received August 21, 2000; accepted for publication September 29, 2000  相似文献   

9.
Pairs of n×n matrices whose commutator differ from the identity by a matrix of rank r are used to construct bispectral differential operators with r×r matrix coefficients satisfying the Lax equations of the Matrix KP hierarchy. Moreover, the bispectral involution on these operators has dynamical significance for the spin Calogero particles system whose phase space such pairs represent. In the case r = 1, this reproduces well-known results of Wilson and others from the 1990’s relating (spinless) Calogero-Moser systems to the bispectrality of (scalar) differential operators.   相似文献   

10.
We reconsider energy calculations of the spin polarized ν = 1/2 Chern-Simons theory. We show that one has to be careful in the definition of the Chern-Simons path integral in order to avoid an IR divergent magnetic ground state energy in RPA as in [J. Dietel et al, Eur. Phys. J. B 5, 439 (1998)]. We correct the path integral and get a well behaved magnetic energy by considering the energy of the maximal divergent graphs as well as the Hartree-Fock graphs. Furthermore, we consider the ν = 1/2 and the ν = 5/2 system with spin degrees of freedom. In doing this we formulate a Chern-Simons theory of the ν = 5/2 system by transforming the interaction operator to the next lower Landau level. We calculate the Coulomb energy of the spin polarized as well as the spin unpolarized ν = 1/2 and the ν = 5/2 system as a function of the interaction strength in RPA. These energies are in good agreement with numerical simulations of interacting electrons in the first as well as in the second Landau level. Furthermore, we calculate the compressibility, the effective mass and the excitations of the spin polarized ν = 2 + 1/ systems where is an even number. Received 13 June 2000  相似文献   

11.
We exhibit a class of integer spin systems whose free energy can be written in term of an absolutely convergent series at any temperature. This class includes spin systems on ℤ d interacting through infinite range pair potential polynomially decaying at large distances r at a rate 1/r d+ε with ε>0. It also contains the Blume-Emery-Griffiths model in the disordered phase at large values of the crystal field.  相似文献   

12.
For some one-parameter setH N of linear combinations ofN(N−1)/2 elementary transpositions {P jk} (1≤j<kN) at arbitrary naturalN≥3 one can construct a variety {I m} (3≤mN) of operators which commute withH N. Being applied toSU(n) spin representations of the permutation group, this proves the integrability of 1D periodic spin chains with elliptic short-range interaction. Presented at the 9th Colloquium “Quantum Groups and Integrable Systems”, Prague, 22–24 June 2000.  相似文献   

13.
Signature of chaos in power spectrum   总被引:1,自引:0,他引:1  
We investigate the nature of the numerically computed power spectral densityP(f, N, τ) of a discrete (sampling time interval,τ) and finite (length,N) scalar time series extracted from a continuous time chaotic dynamical system. We highlight howP(f, N, τ) differs from the true power spectrum and from the power spectrum of a general stochastic process. Non-zeroτ leads to aliasing;P(f, N, τ) decays at high frequencies as [πτ/sinπτf]2, which is an aliased form of the 1/f 2 decay. This power law tail seems to be a characteristic feature of all continuous time dynamical systems, chaotic or otherwise. Also the tail vanishes in the limit ofN → ∞, implying that the true power spectral density must be band width limited. In striking contrast the power spectrum of a stochastic process is dominated by a term independent of the length of the time series at all frequencies.  相似文献   

14.
In a previous paper [3], we showed how certain orientations of the edges of a graph Γ embedded in a closed oriented surface Σ can be understood as discrete spin structures on Σ. We then used this correspondence to give a geometric proof of the Pfaffian formula for the partition function of the dimer model on Γ. In the present article, we generalize these results to the case of compact oriented surfaces with boundary. We also show how the operations of cutting and gluing act on discrete spin structures and how they change the partition function. These operations allow to reformulate the dimer model as a quantum field theory on surface graphs.  相似文献   

15.
We consider a version of Glauber dynamics for a p-spin Sherrington– Kirkpatrick model of a spin glass that can be seen as a time change of simple random walk on the N-dimensional hypercube. We show that, for all p ≥ 3 and all inverse temperatures β > 0, there exists a constant γ β ,p  > 0, such that for all exponential time scales, exp(γ N), with γ < γ β ,p , the properly rescaled clock process (time-change process) converges to an α-stable subordinator where α = γ/β 2 < 1. Moreover, the dynamics exhibits aging at these time scales with a time-time correlation function converging to the arcsine law of this α-stable subordinator. In other words, up to rescaling, on these time scales (that are shorter than the equilibration time of the system) the dynamics of p-spin models ages in the same way as the REM, and by extension Bouchaud’s REM-like trap model, confirming the latter as a universal aging mechanism for a wide range of systems. The SK model (the case p = 2) seems to belong to a different universality class.  相似文献   

16.
The ρρN and ρρΔ three-body systems have been studied within the framework of the fixed center approximation of Faddeev equation. The ρρ interaction in isospin I = 0 , spin S = 2 is strongly attractive, and so are the N ρ, ρΔ interactions. This leads to bound states of both ρρN and ρρΔ. We find peaks of the modulus squared of the scattering matrix around 2227 MeV for ρρN, and 2372 MeV for ρρΔ. Yet, the strength of the peak for the ρρN amplitude is much smaller than for ρρΔ, weakening the case for a ρρN bound state, or a dominant ρρN component. A discussion is made on how these states can be searched for in present programs looking for multimeson final states in different reactions.  相似文献   

17.
Recently, Bauke and Mertens conjectured that the local statistics of energies in random spin systems with discrete spin space should in most circumstances be the same as in the random energy model. We review some rigorous results confirming the validity of this conjecture. In the context of the SK models, we analyse the limits of the validity of the conjecture for energy levels growing with the volume of the system. In the case of the Generalised Random energy model, we give a complete analysis for the behaviour of the local energy statistics at all energy scales. In particular, we show that, in this case, the REM conjecture holds exactly up to energies E N < β c N, where β c is the critical temperature. We also explain the more complex behaviour that sets in at higher energies. Research supported in part by the DFG in the Dutch-German Bilateral Research Group “Mathematics of Random Spatial Models from Physics and Biology” and by the European Science Foundation in the Programme RDSES.  相似文献   

18.
In 1969 Ruelle published his construction of the thermodynamic limit, in the sense of Fisher, for the quasi-microcanonical entropy density of classical Hamiltonian N-body systems with stable and tempered pair interactions. Here, “quasi-microcanonical” refers to the fact that he discussed the entropy defined with a regularized microcanonical measure as ln (N!−1 χ {ℰ−ℰ<H<ℰ}d6N X) rather than defined with the proper microcanonical measure as ln (N!−1 δ(ℰ−H) d6N X). Replacing δ(ℰ−H) by χ {ℰ−ℰ<H<ℰ} seems to have become the standard procedure for rigorous treatments of the microcanonical ensemble hence. In this note we make a very elementary technical observation to the effect that Ruelle’s proof (still based on regularization) does establish the thermodynamic limit also for the entropy density defined with the proper microcanonical measure. We also show that with only minor changes in the proof the regularization of δ(ℰ−H) is actually not needed at all.  相似文献   

19.
20.
 The H ion in the s-wave model has one bound state and a Rydberg series of resonances, one associated with each inelastic threshold of the electron hydrogen system. We calculate the energy of the bound state and the energies of the resonances as well as their total widths up to N = 9 and partial widths up to N = 7. Received July 5, 1999; revised February 18, 2000; accepted for publication February 22, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号