首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
近年来 ,有许多文献报道茂金属催化剂的负载化及其在烯烃聚合中的应用 ,这对发展新型茂金属催化剂和开发新型高分子材料有重要意义 [1,2 ] .我们 [3]曾报道壳聚糖负载稀土催化剂用于甲基丙烯酸甲酯的配位聚合有优良性能 .以五甲基环戊二烯为配体的有机稀土配合物 ,如 [Sm H( C5Me5) ]2 ,[C5Me5]Ln Me( THF) ( Ln=Sm,Yb)等在甲苯中单组分引发甲基丙烯酸甲酯聚合及内酯开环聚合具有许多优异性能[4 ,5] ,但是经负载化的该类催化剂的聚合性能尚未见报道 .本文报道将 [C5Me5]2 Sm Me·( THF)负载于二氧化硅 ,引发甲基丙烯酸甲酯聚合的结…  相似文献   

2.
茂钇-铝双金属配合物催化甲基丙烯酸甲酯立规聚合   总被引:1,自引:1,他引:0  
立规聚合;茂稀土催化剂;稀土;茂钇-铝双金属配合物催化甲基丙烯酸甲酯立规聚合  相似文献   

3.
自60年代以来,Ziegler型催化剂用于极性单体甲基丙烯酸甲酯(MMA)的聚合研究较多,如由钛、矾、铁等过渡金属化合物与烷基铝组成的催化剂[1~3].近年来出现了锆、稀土配位催化聚合MMA及其他丙烯酸酯的报道[4~6],这些催化剂引发MMA聚合机理相当复杂,有的为自由基型,有的则为配位阴离子型.本文报道极性单体MMA在环烷酸钕三异丁基铝α,α’联吡啶体系中的聚合特征和聚合反应动力学,并初步探讨了反应机理.1 原料及试剂甲基丙烯酸甲酯为化学纯,按常法纯制.苯、甲苯、四氢呋喃、石油醚、环己烷…  相似文献   

4.
<正> 基团转移聚合(GTP)是Webster等首先发现的一种新型的聚合方法。最常用的引发剂为甲基三甲基硅烷基二甲乙烯酮缩醛(MTS)。催化剂有负离子型(如HF_2~-,CN~-等)和Lewis酸型。Bandermann和Mai研究了甲基丙烯酸甲酯(MMA)的负离子催化剂的GTP动学。Hertler和Sogah报道了Lewis酸催化剂的聚合反  相似文献   

5.
在0~100℃温度范围内,由原子转移自由基聚合方法,采用助催化和非助催化体系,引发甲基丙烯酸甲酯聚合,利用13CNMR测定聚甲基丙烯酸甲酯的等规度.发现原子转移自由基聚合仍以间同立构为主,随着聚合温度的升高间同立构等规度降低,与通常自由基聚合对有规立构控制特征相似.助催化剂异丙醇铝和活性端羰基配位,对聚合物的立构规整性有一定的影响.  相似文献   

6.
Ziegler用三乙基铝为催化剂使乙烯聚合的工作是衆所周知的,这样,乙烯就可以不用压力而进行聚合。还在Ziegler工作以前,人们认为乙烯是属于不容易聚合的不饱和化合物之类,因此新的催化剂既然可以使乙烯进行聚合,那么似乎也可以用来引发其他易於聚合的单体。但是像丙烯腈和甲基丙烯酸甲酯这类单体在有三乙基铝存在时并不聚合,在苯乙烯的情况下虽有聚  相似文献   

7.
本文报道了一类硅烯醚型的基团转移聚合引发剂。并以负离子和HgI_2等为催化剂,进行了甲基丙烯酸酯和丙烯酸酯的基团转移聚合。得到了实测分子量和理论分子量相近且分散性较小的浆合物。进行了甲基丙烯酸甲酯的活性聚合以及其与丙烯酸酯的A-B-A型三嵌段共聚,证实具有活性高分子的特征。探讨了该类引发剂引发基团转移聚合的机理,研究了催化剂和引发剂的配合选择性以及催化剂和引发剂的摩尔比对产物分子量和转化率的影响,发现该类引发剂引发的基团转移聚合是一恒速聚合反应。  相似文献   

8.
四乙基二氟化氢铵催化的基团转移聚合   总被引:1,自引:3,他引:1  
用三种引发剂进行了二氟化氢负离子催化的基团转移聚合,得到了窄分布的,实测分子量和理论分子量相近的一系列聚甲基丙烯酸酯产物,合成了分子量达20万以上的聚甲基丙烯酸甲酯,探讨了引发剂和催化剂用量对产物的分子量和分散性的影响,认为过量的催化剂使产物的分散性加大和实测(?)_n大于理论M_n。得到了控制聚合的最佳催化剂和引发剂浓度比。  相似文献   

9.
自60年代以来,Ziegler型催化剂用于极性单体甲基丙烯酸甲酯(MMA)的聚合研究较多,如由钛、矾、铁等过渡金属化合物与烷基铝组成的催化剂[1~3].近年来出现了锆、稀土配位催化聚合MMA及其他丙烯酸酯的报道[4~6],这些催化剂引发MMA聚合机理相当复杂,有的为自由基型,有的则为配位阴离子型.本文报道极性单体MMA在环烷酸钕-三异丁基铝-α,α'-联吡啶体系中的聚合特征和聚合反应动力学,并初步探讨了反应机理.  相似文献   

10.
以CuCl/TMEDA为催化剂、氯乙酸为引发剂利用原子转移自由基聚合方法在本体或溶液体系中合成了具有窄分子量分布和末段羧基的聚甲基丙烯酸甲酯和聚苯乙烯。在两种单体的本体或溶液聚合体系中,单体和氯乙酸的配料比增加,有利于聚合反应速度的加快;本体中进行的甲基丙烯酸甲酯和苯乙烯聚合反应速率比相应的溶液聚合体系快,但是得到的最终产物的分子量分布指数Mw/Mn较宽;溶液聚合方法的使用,使聚合反应速度缓和,得到的聚合产物聚甲基丙烯酸甲酯和聚苯乙烯的Mw/Mn介于1.17-1.21和1.16-1.19之间,具有理想的窄分子量分布;动力学实验表明,聚合反应以ATRP的聚合机理进行,体现出活性/可控聚合的特征;聚合产物聚甲基丙烯酸甲酯和聚苯乙烯及其末段端基由~1HNMR表征。  相似文献   

11.
Polymerization of vinyl monomers using oxidase as catalyst has been performed under argon in the presence of acetylacetone as a mediator and without the use of hydrogen peroxide. The polymerization of acrylamide was catalyzed by a laccase or sarcosine oxidase catalyst in distilled water and efficiently produced the polymer with high molecular weight. In the polymerization using the laccase catalyst, the effects of temperature, time, and amounts of enzyme and mediator have been systematically investigated. On the other hand, various other oxidases such as bilirubin, choline, and xanthine oxidases showed no or little activity for the vinyl polymerization. The laccase/acetylacetone catalyst induced the polymerization of methyl methacrylate and styrene in a mixture of water and tetrahydrofuran. Laccase alone also acted as a catalyst for the vinyl polymerization of acrylamide and methyl methacrylate without acetylacetone. In the polymerization of methyl methacrylate using lipoxidase as the catalyst in the presence of acetylacetone, the reaction occurred in air.  相似文献   

12.
基团转移聚合制备侧链型联苯液晶高分子的研究   总被引:9,自引:3,他引:9  
<正> 由具有刚性介晶结构同时又具有双键的单体进行加聚反应,是制备侧链型液晶高分子最方便的方法。大多采用甲基丙烯酸酯或丙烯酸酯类,聚合后形成乙烯型柔性主链,同时侧链上又带有刚性介晶相结构单元。以联苯类作为介晶相的液晶,由于具有稳定性好的优点,是目前应用得最广泛的一种液晶材料。Maganini用自由基聚合的方法进行了侧链型联苯液晶高分子的合成和研究。基团转移聚合作为一种新的加聚方式,为丙  相似文献   

13.
Nanocomposites are obtained by the radical polymerization of styrene and methyl methacrylate on the surface of a dispersed filler containing chemisorbed compounds of quaternary ammonium, which catalyze decomposition of cumene hydroperoxide. The heterogeneous catalysts of hydroperoxide decomposition are obtained via the adsorption of cetyltrimethyl ammonium bromide and acetylcholine chloride on sodium montmorillonite, cellulose, and chitosan. The highest rate of the polymerization of both monomers is provided by the cellulose–cetyltrimethyl ammonium bromide catalyst. For a more hydrophilic methyl methacrylate, the rate of radical initiation is significantly lower at the same concentrations of the catalyst and hydroperoxide compared with hydrophobic styrene; however, the rate of polymerization is higher than for styrene because of a higher activity of methyl methacrylate in chain-propagation reactions. Relatively high rates of radical generation upon contact of cellulose–cetyltrimethyl ammonium bromide and cellulose–acetylcholine with hydroperoxides open the possibility to create cellulose-based disinfecting and medical materials.  相似文献   

14.
Polymerization of methyl methacrylate has been studied with the chromium acetylacetonate–triisobutyl aluminum catalyst system in benzene medium at 40°C. These studies have been carried out at an Al/Cr ratio of 12 to compare the behavior with the previously studied chromium acetyl acetonate–triethyl aluminum catalyst system. The enhanced yield and gelling of polymer suggests a free-radical mechanism of polymerization. Further, the kinetics of polymerization and the heterotactic structure of polymer as determined by NMR examination have led to confirmation of the freeradical mechanism of polymerization of methyl methacrylate by an excess of triisobutylaluminum in the presence of catalyst complex.  相似文献   

15.
This report describes the remarkably rapid synthesis of polymer brushes under mild conditions (50 degrees C) using surface-initiated polymerization. The highly active atom transfer radical polymerization catalyst Cu(I)-1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane allows synthesis of 100 nm thick poly(tert-butyl acrylate) brushes from initiator-modified Au surfaces in just 5 min. Using the same catalyst, polymerization of 2-hydroxyethyl methacrylate and methyl methacrylate yielded 100 nm thick films in 10 and 60 min, respectively. Such growth rates are an order of magnitude greater than those for traditional free-radical polymerizations initiated from surfaces. These polymerizations also retain some features of controlled radical polymerizations, such as the ability to form block copolymer brushes.  相似文献   

16.
The polymerization of methyl methacrylate was carried out with the following Ziegler-Natta type initiating systems: Fe(AcAc)3-AlEt2Br, Fe(AcAc)3-ZnEt2 (acac = acetyl acetonate). Both the catalyst systems are active under homogeneous conditions in benzene at 40°C for methyl methacrylate polymerization. The polymerization kinetics suggests that the average rate of polymerization was first order with respect to [monomer] for both the catalyst systems, and the overall activation energies were found to be 14.0 and 12.8 kcal mol ?1.  相似文献   

17.
Methyl methacrylate(MMA) polymerized in the presence of a new homogeneous catalyst of Y(acac)3-(i-Bu)3Al-BuLi. The effects of MMA/Y, Al/Y, Li/Y molar ratios, polymerization temperature and time are reported. The results show that a small amount of butyl lithium could greatly enhance the activity of the catalyst and the polymerization reaction could be carried out at low temperatures (-25℃-10℃) with a high conversion. 200 kg of poly(methyl methacrylate) (PMMA) with 63% syndiotacticity could be prepared by using 1 mole of yttrium.  相似文献   

18.
The effect of 1‐butyl‐3‐methylimidazolium hexafluorophosphate ionic liquid on the living radical polymerization of methyl methacrylate initiated with arenesulfonyl chlorides and catalyzed by the self‐regulated Cu2O/2,2′‐bipyridine catalyst was investigated. A dramatic acceleration of the living radical polymerization of methyl methacrylate in this ionic liquid was discovered. This accelerated living radical polymerization maintained an initiation efficiency of 100%, eliminated the induction period of this catalyst, and produced poly(methyl methacrylate) with molecular weight distribution of 1.1 and perfect bifunctional chain‐ends. The kinetic analysis of the living radical polymerization in the presence of ionic liquid demonstrated a rate constant of propagation that follows an almost first order of reaction on the ionic liquid concentration and therefore, the ionic liquid exhibits catalytic effect. The catalytic effect of the ionic liquid facilitated the reduction of the catalyst concentration from stoichiometric to catalytic and allowed the decrease of the polymerization temperature from 80 to 22 °C. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5609–5619, 2005  相似文献   

19.
Methyl methacrylate and p-fluorostyrene were polymerized with manganese (III) acetylacetonate–aluminum triethyl catalyst at 60°C in a benzene medium. Maximum activity was found at Al/Mn ratio of 4. Maximum percent conversion of polymer was obtained when the aging time of the catalyst was 10 min. The rate of polymerization was first order with respect to monomer. The rate of polymerization with respect to catalyst and cocatalyst were found to be 0.5 and 1.5, respectively. The overall energy of activation for the polymerization of methyl methacrylate and p-fluorostyrene were found to be 52.6 and 57.0 kJ/mole, respectively. A free-radical mechanism is postulated.  相似文献   

20.
Electrochemically mediated atom transfer radical polymerizations (ATRPs) provide well‐defined polymers with designed dispersity as well as under external temporal and spatial control. In this study, 1‐cyano‐1‐methylethyl diethyldithiocarbamate, typically used as chain‐transfer agent (CTA) in reversible addition–fragmentation chain transfer (RAFT) polymerization, was electrochemically activated by the ATRP catalyst CuI/2,2′‐bipyridine (bpy) to control the polymerization of methyl methacrylate. Mechanistic study showed that this polymerization was mainly controlled by the ATRP equilibrium. The effect of applied potential, catalyst counterion, catalyst concentration, and targeted degree of polymerization were investigated. The chain‐end functionality was preserved as demonstrated by chain extension of poly(methyl methacrylate) with n‐butyl methacrylate and styrene. This electrochemical ATRP procedure confirms that RAFT CTAs can be activated by an electrochemical stimulus. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 376–381  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号