首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
以Y2O3为基质材料,Yb3+为敏化剂,Tm3+为激活剂,采用化学共沉淀法制备Y2O3∶Yb3+,Tm3+纳米粉体,通过差热、红外光谱、XRD、荧光、上转换发光和场发射电子显微镜等方法对样品进行表征.结果表明:Tm3+和Yb3+完全固溶到Y2O3立方晶格中,且粉体大小均匀,尺寸约50 nm;Yb3+浓度为4;(摩尔分数)、煅烧温度900 ℃时,荧光和上转换发光强度最强;Tm3+浓度为0.4;时绿光(5F4/5S2→5I8)和红光(2F5/2→2F7/2)荧光强度最强,浓度0.5;时蓝光(1G4→3H6)和红光(1G4→3F4)的上转换发射强度最大.  相似文献   

2.
Ti:Al2O3透明多晶陶瓷光谱特性分析   总被引:4,自引:0,他引:4  
采用传统无压烧结工艺制备出透明性良好的掺Ti氧化铝陶瓷;测定了该陶瓷的吸收光谱、荧光光谱和激发光谱.结果表明,掺Ti氧化铝透明陶瓷样品在Mg与Ti掺入离子的摩尔比(NMg/NTi)较小时,表现出Ti3+离子的490nm特征吸收峰,即2T2→2E跃迁产生的宽带吸收;NMg/NTi较大时,陶瓷样品吸收光谱中不存在Ti3+离子吸收,其250nm处吸收为O2-→Ti4+的转移吸收.掺Ti氧化铝透明陶瓷样品Ti3+离子的发射谱线与单晶的相吻合,同时Ti3+在氧化铝陶瓷中分布很均匀,且Ti3+浓度较高时仍处于未畸变的八面体格位当中.氢气氛下烧结的陶瓷样品因MgO添加剂的存在而在410nm处产生Ti4+离子荧光发射;而280nm、420nm左右的荧光发射分别是由F+和F心造成的.  相似文献   

3.
以Y2O3粗粉、Nd2O3、硝酸和NH4HCO3为原料,通过共沉淀法制备了Nd3+:Y2O3透明激光陶瓷纳米粉体,并采用TG/DTA、XRD、FTIR、TEM以及EDS等测试方法对粉体性能进行了表征.结果表明,在先驱物中添加适量SO42-离子能减轻煅烧得到的Nd3+:Y2O3粉体的团聚,使粉体粒度均匀并呈球形分布.在1100 ℃煅烧4 h所得粉体粒度均匀,粒径在50~70 nm之间,具有较好的分散性,适合作为制备透明激光陶瓷的粉体材料.  相似文献   

4.
采用凝胶-燃烧法,在活性炭弱还原气氛下合成了新型荧光粉Sr3-xMgSi3O10: Tb3+x,通过热分析仪、红外光谱、X射线粉末衍射、X射线能量色散谱仪及荧光分光光度计等对产物的形成过程、结构、组成及发光性质进行了分析和表征.结果表明:干凝胶起火燃烧得前驱物,经900 ℃还原热处理即可得目标产物,其晶体结构与Sr2MgSi2O7相似,同属四方晶系.Sr3-xMgSi3O10: Tb3+x的激发光谱为一位于200~300 nm的宽带,主激发峰在249 nm左右;发射光谱由491 nm, 544 nm, 586 nm, 624 nm等一系列窄带发射峰组成,归属于Tb3+的5D4到7FJ (J=6,5,4,3)的跃迁.主发射峰位于544 nm,对应于Tb3+的5D4→7F5的能级跃迁,导致一种黄绿光发射.研究发现:还原温度及Tb3+掺杂浓度对发光强度有着重要的影响,并对浓度猝灭机制进行了探讨.  相似文献   

5.
赵文武 《人工晶体学报》2016,45(11):2717-2721
采用高温固相反应法合成了Bi2-xZnB2O7∶xEu3+(x=0.06,0.08,0.10,0.12,0.15)红色发光材料,并对其制备工艺及发光特性进行了研究.利用XRD和SEM等对粉体进行了结构、纯度和形貌表征,同时讨论了烧结温度对其发光性能的影响得出最佳的烧结温度为680℃.在激发波长为465 nm的条件下,材料的发射峰主要位于582nm、596 nm、617 nm、656 nm和704 nm处,分别归属于Eu3+的5D0→7FJ(J=0,1,2,3,4)电子跃迁,其中以在617nm处的Eu3+的5D0→7F2跃迁产生的电偶极跃迁发射为最强.研究了Eu3+离子掺杂浓度对Bi2ZnB2O7∶Eu3+发光性能的影响,结果随着Eu3+离子浓度的增大,样品的发光强度先增大后减小,最佳掺杂浓度为x=0.1.  相似文献   

6.
以柠檬酸为燃料,采用低温燃烧法制备了Nd:YGG纳米粉体,利用XRD、红外光谱、SEM及荧光光谱等测试方法对粉体的结构、形貌及荧光性能进行了表征.结果表明,锻烧温度为900℃时粉体已形成Nd:YGG纯相;Nd:YGG粉体平均粒径约为30nm;粉体的最强荧光发射峰位于1064.94tmt,是Nd3+的4F(3/2)→4I(11/2)能级跃迁导致的荧光发射.  相似文献   

7.
以碳酸氢铵作为沉淀剂,分别以聚乙二醇-1000(PEG-1000)、十二烷基磺酸钠(DSASS)、十六烷基三甲基溴化铵(CTAB)、乙二醇(EG)为表面活性剂,采用水热法制得了棒状Gd2O3:Eu3+微晶。用XRD、SEM、荧光光谱仪等分别对样品的物相结构、微观形貌和发光性能进行了研究。结果表明:采用不同的表面活性剂所得前驱物经800℃下焙烧均得到了纯立方相的Gd2O3:Eu3+微晶,颗粒基本呈棒状,分散性较好,但长径比不同。以PEG-1000为表面活性剂所得样品尺寸不均一,尺寸分布范围较宽;以DSASS、CTAB、EG为表面活性剂所得样品直径较小、长度较短,且尺寸分布范围较窄。棒状Gd2O3:Eu3+微晶主发射峰位置均在613 nm,属于5D0→7F2跃迁,呈红光发射;激发光谱中电荷迁移态发生了红移,主激发峰位于261 nm。表面活性剂种类对发射峰和激发峰强度影响较大,由强到弱的顺序为:PEG-1000>DSASS>CTAB>EG。  相似文献   

8.
Nd3+:Sr3Ga2Ge4O14晶体的生长及吸收光谱   总被引:2,自引:1,他引:1  
采用坩埚下降法生长了Nd3+掺杂浓度分别为15;、8;和2.5;原子分数的Sr3Ga2Ge4O14晶体,所得晶体最大尺寸为φ26mm×15mm.Nd3+掺杂Sr3Ga2Ge4O14晶体的特征吸收峰波长为806nm,与Nd3+离子在YAG中的特征吸收峰相比,向短波方向发生了微小的偏离.这是Sr3Ga2Ge4O14晶格中Ga3+和Ge4+的统计分布所致.Nd3+:SGG晶体的这些特性将有助于泵浦效率的提高和泵浦阈值的降低,因此Nd3+:SGG晶体有望成为一种新型的LD泵浦固体激光材料.  相似文献   

9.
本文采用导模提拉法成功生长了Tb3Sc2Al3O12 (TSAG)晶体,并对所生长晶体进行了物相分析和单晶结构分析,探讨了多晶原料的烧结温度对晶体颜色的影响.Sc3+和Al3+的浓度分布测试表明,导模提拉法能较好地克服因分凝效应引起的Sc3+浓度分布不均,可以生长获得浓度分布均匀的TSAG晶体.磁光性能测试表明,Sc3+掺入对晶体在400~1100 nm波长范围内的磁光性能影响不大,所生长TSAG晶体的费尔德常数仅比Tb3Al5O12 (TAG)晶体低6; ~8;.  相似文献   

10.
采用微波辅助凝胶燃烧法制备了Ca2MgSi2O7∶Eu3+红色荧光粉,运用XRD、荧光分光光度计等对合成样品进行分析表征,并探讨了焙烧温度、助熔剂用量、Eu3+浓度等对样品发光性能的影响。结果表明:所得样品为四方晶系的Ca2MgSi2O7晶体结构。Ca2MgSi2O7∶Eu3+的激发光谱由一宽带和一组锐线峰组成,分别归属于Eu3+-O2-之间的电荷迁移态和Eu3+的f→f跃迁。样品的发射光谱主要由两个强发射峰组成,分别位于591 nm和619 nm处,属于Eu3+的5D0→7F1磁偶极跃迁和5D0→7F2的电偶极跃迁。研究发现:当焙烧温度为1000℃、助熔剂H3BO3用量为15%时,样品发光性能较好;Eu3+浓度(x)对样品Ca2-xMgSi2O7∶Eu3x+的发光强度影响较大,当Eu3+浓度x在0.02~0.16范围内变化时,随着Eu3+浓度的增加,样品的发光强度不断增加,未出现明显的浓度猝灭现象。  相似文献   

11.
Fe2O3微球的制备及其表征   总被引:1,自引:1,他引:0       下载免费PDF全文
本文采用阳离子交换树脂为模板,通过离子交换、高温焙烧等过程制备了Fe2O3微球.采用X射线衍射、红外光谱、扫描电镜、X射线能量散射谱仪等分析方法对产物进行了表征.结果表明:所制备的微球直径在300~500 μm之间,微球表面由α-Fe2O3颗粒有序排列组成.  相似文献   

12.
Y_2O_3:Er~(3+)上转换纳米纤维的制备与性质研究   总被引:1,自引:0,他引:1  
采用静电纺丝技术制备了PVA/[Y(NO_3)_3+Er(NO_3)_3]复合纳米纤维,将其在适当的温度下进行热处理,得到Y_2O_3∶Er~(3+)上转换纳米纤维.XRD分析表明,PVA/[Y(NO_3)_3+Er(NO_3)_3]复合纳米纤维为无定型,Y_2O_3∶Er~(3+)上转换纳米纤维属于体心立方晶系,空间群为Ia3.SEM分析表明,PVA/[Y(NO_3)_3+Er(NO_3)_3]复合纳米纤维的平均直径约为130 nm;经过600 ℃焙烧后,获得了直径约60 nm Y_2O_3∶Er~(3+)上转换纳米纤维.TG-DTA分析表明,当焙烧温度高于600 ℃时,PVA/[Y(NO_3)_3+Er(NO_3)_3]复合纳米纤维中水分、有机物和硝酸盐分解挥发完毕,样品不再失重,总失重率为80;.FT-IR分析表明,PVA/[Y(NO_3)_3+Er(NO_3)_3]复合纳米纤维的红外光谱与纯PVA的红外光谱基本一致,600 ℃时,生成了Y_2O_3∶Er~(3+)上转换纳米纤维.该纤维在980 nm激光激发下发射出中心波长为522 nm、561 nm的绿色和658 nm的红色上转换荧光,对应于 Er~(3+)的~2H_(11/2)/~4S_(3/2)→~4I_(l5/2)跃迁和~4F_(9/2)→~4I_(l5/2)跃迁.对Y_2O_3∶Er~(3+)上转换纳米纤维的形成机理进行了讨论,该技术可以推广用于制备其他稀土氧化物上转换纳米纤维.  相似文献   

13.
La2O3纳米晶的制备及表征   总被引:5,自引:1,他引:4  
以六水合硝酸镧为原料,尿素为沉淀剂,采用均匀沉淀法制备了La2O3纳米晶,探讨了制备条件对产品产率和平均粒径的影响,得出了最佳工艺条件:反应物n(尿素)/n(硝酸镧)为6: 1,沉淀反应温度和时间分别为115 ℃和2.0 h,煅烧温度为750 ℃.同时,利用FT-IR、XRD和SEM等分析方法对最佳制备条件下所得产品的物相结构、形貌和粒径进行了表征.结果显示:实验制备的La2O3纳米晶颗粒呈球形,分散性好,纯度较高,属六方晶系结构,平均粒径为32 nm.  相似文献   

14.
基于Al2O3-ZrO2-SiO2体系,选择不同组成点,在常规烧结后,进行不同条件下的微波处理,采用XRD检测不同处理后材料的组成变化,分析了微波与材料的相互作用,以及动力学条件与热力学条件对微波处理后相变化的影响。通过与传统Al2O3-ZrO2-SiO2体系相图的相组成比较,排除了升温制度、测温误差对实验结果的影响,对微波作用下的非热效应进行了分析。  相似文献   

15.
La2O3掺杂对SnO2基陶瓷显微结构与电阻率的影响   总被引:2,自引:1,他引:1  
以La2O3作掺杂剂,制备了La2O3掺杂的SnO2陶瓷.采用XRD、SEM以及其它测试手段对该陶瓷进行测试.结果表明:掺入适量的La2O3能够降低SnO2基陶瓷电阻率,促进SnO2晶相的形成和生长,对SnO2基陶瓷的致密化起到良好的作用.  相似文献   

16.
本文以钛酸正四丁酯为前驱体采用溶胶凝胶法制备了稳定的TiO2溶胶,以可溶性的硝酸铝作为掺杂剂制备了Al2O3-TiO2复合薄膜。采用XRD分析了薄膜的晶相组成,AFM表征了薄膜表面粗糙度随着Al2O3添加量的增加而变化的趋势。XRD测试结果表明,随着Al2O3添加量的增加,薄膜中TiO2晶粒的平均尺寸逐渐减小;而AFM测试结果表明,薄膜表面粗糙度呈现减小的趋势,但是当Ti/Al比例增加到1∶0.12时,颗粒尺寸比1∶0.06时有所增大,这主要是由于包覆在TiO2晶粒表面的Al2O3非晶相增多导致颗粒聚集生长严重所致。  相似文献   

17.
研究了室温下不同表面修饰剂对Y2O3粉体水化的影响,提高了Y2O3粉体的抗水性和分散性。结果显示:柠檬酸作为表面修饰剂,可以有效阻止Y2O3粉体与水反应,同时添加分散剂Dolapix CE 64,可以制备固含量高、化学稳定的水基Y2O3浆料。  相似文献   

18.
石锋 《人工晶体学报》2009,38(2):445-449
本文采用传统的固相陶瓷烧结工艺,利用Ni2+取代Ba(Zn1/3Nb2/3)O3 的B位Zn2+形成固溶体来研究其微观结构.XRD表明,系统的主晶相为立方钙钛矿的BZNN,并有少量第二相如Ba5Nb4O15、BaNb2O6等存在.随Ni2+含量增加,系统晶格常数a减小;而随烧结温度升高,a逐渐增大.系统在1500 ℃下烧结时为固相烧结;当烧结温度为1550 ℃时,系统由固相烧结转变为液相烧结.较低温度下烧结时,在低角度区有很微弱的1∶ 2有序相产生;烧结温度升高,无序相增加,有序相消失.  相似文献   

19.
采用Bi2O3作烧结助剂,研究了Bi2O3含量,烧结温度对MnCoNiO基NTC热敏半导体陶瓷显微结构与电性能。结果表明:添加0.25 wt%~1.5 wt%Bi2O3可以显著促进烧结,烧结温度可降低至1000℃。随着Bi2O3含量的增加,陶瓷样品的粒径先减小,后增大,含有1.0wt%Bi2O3的样品晶粒最大,伴随着显微结构的变化,材料的电阻率和材料常数(B)先减小,后增大;烧结温度对上述材料体系的电性能有着较大的影响,其影响主要来自于烧结温度对晶粒大小和体系内部阳离子分布的改变。  相似文献   

20.
本文以水、丙酮、乙醇、乙二醇为溶剂,采用溶剂热法制备了不同形貌的纳米氧化镥(Lu2O3粉)粉体前驱体,将前驱体在400~800 ℃条件下煅烧2 h制得了不同形貌的Eu3+:Lu2O3粉体.研究发现,所用溶剂的物理性质对产生特定形貌的样品具有重要的影响,以水和丙酮为溶剂,可制得具有较高长径比的Lu2O3纳米棒,而当溶剂为乙醇和乙二醇时,所得Lu2O3粉体为等轴状的纳米颗粒.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号