首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The two ion-pair complexes, [pyH]2[Zn(mnt)2] (1) and [4,4′-bipyH2]-[Zn(mnt)2] (2), were synthesized, where mnt2− denotes maleonitriledithiolate, and [pyH]+, [4,4′-bipyH2]2+ represent pyridinium and diprotonated 4,4′-bipyridinium, respectively. Their single crystal structures show that there are strong bifurcated H-bonding interactions between the cations of the pyridinium derivative and the [Zn(mnt)2]2− anions in both 1 and 2. The bifurcated H-bonding interactions between the N–H of the pyridiniums and the CN groups of the mnt2− ligands give rise to a 2D layered H-bonding network, the adjacent layers come together in such way as mutual embrace to give a tight pack, thus 2D hydrogen-bonding sheets further develop into 3D H-bonding networks through weak C–HS and ππ stacking interactions in 1. As for 2, the cations and anions connect into several types of H-bonding macrorings ([2+2], [3+3] and [4+4]), these H-bonding macrorings fuse to extend into 2D layered structure, the interpenetration between [3+3] and [4+4] type H-bonding macrorings in the adjacent layers give further rise to novel 3D extended H-bonding networks, in which there are clearly parallel stacks of cations and the chelate rings of anions.  相似文献   

2.
The molecular structure of the title complex [ZnBr2(C7H6N2)2] was investigated by X-ray diffraction and IR spectroscopy methods. Molecules of zinc(II) complex crystallize in the triclinic crystal system with cell constants a=7.526(2) Å, b=7.8971(8) Å, c=13.431(1) Å, Z=2 and V=791.3(2) Å3. In the molecular structure, the Zn atom is coordinated tetrahedrally by two Br anions and two benzimidazole ligands. Intramolecular steric repulsions between Br anions and benzimidazole groups have been caused to cis configuration around the central metal atom.  相似文献   

3.
The tetrathiomolybdate ion [MoS4]2− reacts in DMF solution with Roussin esters Fe2(SR)2(NO)4 (R = Me, Et, n-Pr, i-Pr, n-Bu,t-Bu, n-C5H11) to yield the paramagnetic iron nitrosyls [Fe(NO)2(SR)2] (1), [Fe(NO)2(S2MoS2] (2) and [Fe(NO)(S2MOS2)2] (3). The new complexes (2) and (3) have been characterized by EPR spectroscopy and the assignment to them of constitutions based respectively upon tetrahedral and square pyramidal iron is supported by EHMO calculations. Fe2(SPh)2(NO)4 with [MoS4]2− yields only [Fe(NO)2(SPh)2], and preformed (3) reacts with PhS to give firstly EPR-silent species, and then [Fe(NO)2(SPh)2]. The mononitrosyl (3) can also be formed by reaction of [MoS4]2− with [Fe4S3(NO)7], Fe4S4(NO)4, or Fe2I2(NO)4.  相似文献   

4.
The generality of a two-electron reduction process involving an mechanism has been established for M3(CO)12 and M3(CO)12n(PPh3)n (M = Ru, Os) clusters in all solvents. Detailed coulometric and spectral studies in CH2Cl2 provide strong evidence for the formation of an ‘opened’ M3(CO)122− species the triangulo radical anions M3(CO)12−· having a half-life of < 10−6 s in CH2Cl2. However, the electrochemical response is sensitive to the presence of water and is concentration dependent. An electrochemical response for “opened” M3(CO)122− is only detected at low concentrations < 5 × 10−4 mol dm−3 and under drybox conditions. The electroactive species ground at higher concentrations and in the presence of water M3(CO)112− and M6(CO)182− were confirmed by a study of the electrochemistry of these anions in CH2Cl2; HM3(CO)11 is not a product. The couple [M6(CO)18]−/2− is chemically reversible under certain conditions but oxidation of HM3(CO)11 is chemically irreversible. Different electrochemical behaviour for Ru3(CO)12 is found when [PPN][X] (X = OAc, Cl) salts are supporting electrolytes. In these solutions formation of the ultimate electroactive species [μ-C(O)XRu3(CO)10] at the electrode is stopped under CO or at low temperatures but Ru3(CO)12−· is still trapped by reversible attack by X presumably as [η1-C(O)XRu3(CO)11]. It is shown that electrode-initiated electron catalysed substitution of M3(CO)12 only takes place on the electrochemical timescale when M = Ru, but it is slow, inefficient and non-selective, whereas BPK-initiated nucleophilic substitution of Ru3(CO)12 is only specific and fast in ether solvents particulary THF. Metal---metal bond cleavage is the most important influence on the rate and specificity of catalytic substitution by electron or [PPN]-initiation. The redox chemistry of M3(CO)12 clusters (M = Fe, Ru, Os) is a consequence of the relative rates of metal---metal bond dissociation, metal-metal bond strength and ligand dissociation and in many aspects resembles their photochemistry.  相似文献   

5.
Novel anionic dinuclear mixed-ligand peroxo complexes of the type [(UO2)2(O2)3L(H2O)2]3− (L = Histidinate, aspartate, salicylate, Imidazolate and glutamate) have been synthesized from the interaction of uranyl ion (UO22+) with peroxide (O22−) in the presence of the respective coligand (L) at pH 9–10. The sparingly soluble complexes were characterized by elemental analyses, FT-IR, laser Raman (LR) and UV-vis spectroscopy and solution electrical conductance measurements. Based on these studies, a double bridged dinuclear structure involving one peroxo and the mixed ligand L (via-COO) has been tentatively proposed. Infra-red coupled with LR spectra evidenced structurally different metal bound peroxides (ν2 and σ:σ). An aqueous solution of the salicylate and aspartate complexes have been shown to convert triphenylphosphine (PPh3), cyclohexene, styrene and SO2 to the corresponding OPPh3, 1,2 cyclohexanediol, phenylethyleneglycol and SO42−, respectively.  相似文献   

6.
V. Kumar  G. Aravamudan 《Polyhedron》1990,9(24):2879-2885
Reaction of 1,3-thiazolidine-2-thione with tellurium(IV) in hydrobromic acid medium gave the hexabromotellurate, [C6H9N2S3]22+[TeIVBr6]2− (3). Reaction of 1-methylimidazoline-2-(3H)-thione (L″) with tellurium(IV), in hydrobromic acid medium, gave the mixed-ligand tellurium(II) complex [TeIIL″3Br]+Br (4). The structures of [C6H9N2S3]22+[TeIVBr6]2− (3) and [TeIIL″3Br]+Br were determined by single crystal X-ray diffraction methods. In 3 the unit cell contains [TeBr6]2− anions and two [C6H9N2S3]+ cations. There is no direct bonding between the metal atom and the cations. In the anion only slight angular deviations from the perfect octahedral geometry are observed. The lone pair of electrons on tellurium(IV) is found to be stereochemically inert. In the cation the two five-membered heterocyclic rings adopt different conformations. In complex 4, in the solid state, the planar [TeIIL″3Br]+ cation and Br anion are held together by ionic interactions. In the cation, L″ is bonded to the central tellurium atom through the sulphur atom.  相似文献   

7.
Diethylzinc reacts with hydroperchlorates of N-alkylated 1,3,5-triazacyclohexanes (R3TAC; R = methyl (Me), benzyl (Bz), isopropyl (iPr)) and with the hydrotetrafluoroborate of 1,3,5-tris-(para-fluorobenzyl)-1,3,5-triazacyclohexane (FBz3TAC) to give the corresponding cationic zinc ethyl complexes [(R3TAC)Zn(Et)][X] (X = ClO4, BF4). Similar complexes were obtained from diethylzinc treated with [HNMe2Ph][BF4] or [HNMe2Ph][B(C6F5)4](Et2O) in the presence of R3TAC (R = Bz, FBz, s-1-phenylethyl (s-PhMeCH)). A product of decomposition of [(Bz3TAC)Zn(Et)][ClO4] was analyzed by X-ray diffraction. The structures of [({s-PhMeCH}3TAC)Zn(Et)][BF4] an [(FBz3TAC)Zn(Et)][BF4] were estimated using nuclear Overhauser enhancement spectroscopy. Protonolysis of diethylzinc with [HNMe2Ph][BF4] in the presence of 13-benzyl-1,5,9-triazatricyclo[7.3.1.05,13]-tridecane (BzTATC) yielded the complex [(BzTATC)Zn(Et)][BF4].  相似文献   

8.
IR (4000-30 cm−1) and Raman (4000-0 cm) spectra of [(CD3)3S]I have been observed, together with those of [(CH3)3S]I. By assuming a C3v molecular symmetry for the cations [(CH3)3S]+ and [(CD3)3S]+, all the active fundamentals of [(CD3)3s]+ have been assigned and normal coordinate calculations have been carried out by a symmetry force field for [(CH3)3S]+ and [(CD3)3S]+. The strength of the S---C and C---H bonds in the compound has been compared with that in dimethyl sulfide by using their valence stretching force constants.  相似文献   

9.
The compound [Zn(H2O)4]2[H2As6V15O42(H2O)]·2H2O (1) has been synthesized and characterized by elemental analysis, IR, ESR, magnetic measurement, third-order nonlinear property study and single crystal X-ray diffraction analysis. The compound 1 crystallizes in trigonal space group R3, a=b=12.0601(17) Å, c=33.970(7) Å, γ=120°, V=4278.8(12) Å3, Z=3 and R1(wR2)=0.0512 (0.1171). The crystal structure is constructed from [H2As6V15O42(H2O)]4− anions and [Zn(H2O)4]2+ cations linked through hydrogen bonds into a network. The [H2As6V15O42(H2O)]6− cluster consists of 15 VO5 square pyramids linked by three As2O5 handle-like units.  相似文献   

10.
Cuboidal Molybdenum have been paid much attention due to their structural resemble with those metallic centers in some biological systems[1]. To explore the chemistry of trinuclear Mo-S cluster complexes[2], we rationally synthesized two compounds:Mo3S4(DTP)3(nicotinate)(Py)·EtOH (Ⅰ) (DTP=diethyl dithiophosphate) and Mo3S4(DTP)3(isonicotinate)(Py)·EtOH (Ⅱ) by the substitution reaction of Mo3S4(DTP)3(L)(Py) (L=ClCH2COO-, CH3COO-) with nicotinic acid and isonicotinic acid, respectively.  相似文献   

11.
Since the trinuclear molybdenum cluster compound Mo3S4(DTP)3(μ-DTP)(L) (DTP=diethyldithiophosphate, L=loosely-coordinated ligand) was reported[1],a large number of monomeric trinuclear molybdenum derivatives have been synthesized from it by its diverse substitution reactions[2]. This reaction provides a useful route to design cluster complexes with specific functions. By the reaction with α, ω-dicarboxylates, we successfully synthesized the first oligomer containing two incomplete cubane-type[Mo3S4] cores formulated as[Mo3S4(DTP)3(DMF)]22-μ-OOC(CH2)3COO-μ-η2]) whose molecule structure is as follows:  相似文献   

12.
The five-coordinate mono-halide mononuclear Zn(II) complexes [Zn(tpa)X]+ (tpa = tris(2-pyridylmethyl)amine; X = I ([Zn(tpa)I]I; 1a), Br ([Zn(tpa)Br](ZnBr4)0.5; 2a) and Cl ([Zn(tpa)Cl](ZnCl4)0.5; 3a)) and the six-coordinate mononuclear complex [Zn(tpa)(NCS)2] (4a) have been synthesized and characterized by X-ray crystallography. The [Zn(tpa)X]+ complexes doped with the corresponding [Mn(tpa)X2] complexes (X = I (1b), Br (2b) and Cl (3b)) have been synthesized and their electronic properties investigated by multifrequency high field EPR (HF-EPR) (95–285 GHz). The magnetically diluted conditions allow the determination of the hyperfine coupling constant A (A = 68.10−4 cm−1 for 1b–3b). The zero-field splitting parameters (D and E) found for 1b–3b are comparable to those found for neat samples of the [Mn(tpa)X2] complexes (1b: D = 0.635 cm−1, E/D = 0.189; 2b: D = 0.360 cm−1, E/D = 0.192; 3b: D = 0.115 cm−1, E/D = 0.200). The efficacy of using multifrequency EPR under dilute conditions to precisely determine spin Hamiltonian parameters is discussed.  相似文献   

13.
The anion [Fe4S3(NO)7] undergoes slow exchange with labelled nitrite [15NO2] to yield a product [Fe4S3(14NO)(15NO)6] in which complete isotopic exchange has occurred at the basal Fe(NO)2 groups, but with no exchange at the apical Fe(NO) group. The neutral Fe4S4(NO)4 reacts rapidly with [15NO2 to give fully exchanged [Fe4S3(15NO)7], and it is proposed that the conversion proceeds by fragmentation, followed by complete isotopic exchange and rapid reassembly. The binuclear anion [Fe2S2(NO)4]2− also yields, with [15NO2]2− in CD2Cl2 solution, the fully exchanged [Fe4S3(15NO)7], and a mechanism involving successive fragmentation, exchange and reassembly steps is proposed; however in aqueous solution, a clean exchange reaction occurs to give [Fe2S2(15NO)4]2−. Neutral binuclear esters Fe2(SR)2(NO)4 (R = Me, Et, or Ph) with [14NO2] yield the mononuclear paramagnetic [Fe(14NO)2(14NO2)2], and with [15NO2] the analogous [Fe(15NO)2(15NO2)2].  相似文献   

14.
Treatment of [Ru2(CO)4(MeCN)6][BF4]2 or [Ru2(CO)4(μ-O2CMe)2(MeCN)2] with uni-negative 1,1-dithiolate anions via potassium dimethyldithiocarbamate, sodium diethyldithiocarbamate, potassium tert-butylthioxanthate, and ammonium O,O′-diethylthiophosphate gives both monomeric and dimeric products of cis-[Ru(CO)22-(SS))2] ((SS)=Me2NCS2 (1), Et2NCS2 (2), tBuSCS2 (3), (EtO)2PS2 (4)) and [Ru(CO)(η2-(Me2NCS2))(μ,η2-Me2NCS2)]2 (5). The lightly stabilized MeCN ligands of [Ru2(CO)4(MeCN)6][BF4]2 are replaced more readily than the bound acetate ligands of [Ru2(CO)4(μ-O2CMe)2(MeCN)2] by thiolates to produce cis-[Ru(CO)22-(SS))2] with less selectivity. Structures 1 and 5 were determined by X-ray crystallography. Although the two chelating dithiolates are cis to each other in 1, the dithiolates are trans to each other in each of the {Ru(CO)(η2-Me2NCS2)2} fragment of 5. The dimeric product 5 can be prepared alternatively from the decarbonylation reaction of 1 with a suitable amount of Me3NO in MeCN. However, the dimer [Ru(CO)(η2-Et2NCS2)(μ,η2-Et2NCS2)]2 (6), prepared from the reaction of 2 with Me3NO, has a structure different from 5. The spectral data of 6 probably indicate that the two chelating dithiolates are cis to each other in one {Ru(CO)(η2-Et2NCS2)2}fragment but trans in the other. Both 5 and 6 react readily at ambient temperature with benzyl isocyanide to yield cis-[Ru(CO)(CNCH2Ph)(η2-(SS))2] ((SS)=Me2NCS2 (7) and Et2NCS2 (8)). A dimerization pathway for cis-[Ru(CO)22-(SS))2] via decabonylation and isomerization is proposed.  相似文献   

15.
The transition 4A22E of Co2+ has been investigated in [N(CH3)4]2CoCl4 using optical absorption and magnetic circular dichroism. Three groups of lines with 274 cm−1 progressions were observed. The structure of the spectra indicates a J-T interaction in the 2E state with strong depression of the frequency of the J-T active mode. The ground-state splitting is 7.2 cm−1.  相似文献   

16.
The existence of a series of 32 molecular radical anions from carboxylic acids salts RCOO-Cat−., where R = CH3, CH3CH2, CH3CH2CH2, (CH3)2CH, C6H5, o-CH3-C6H4, m-CH3-C6H4, and p-CH3-C6H4 and Cat = Li, Na, K, Rb, has been proven by the observation of their fragmentation in negative-ion fast-atom bombardment tandem mass spectrometry. These species occur at very low abundance and are not detected in the fast-atom bombardment spectra because they are hidden in the background. However, the collision-induced dissociation fragmentation of ions selected at the mass-to-charge ratio values that correspond to these species display characteristic signals that are completely different from the signals observed from pure matrix or after addition of corresponding metal hydroxide to the matrix. The main fragmentation observed is the loss of the neutral metal atom from RCOOCat−., followed by a loss of CO2 for the aromatic compounds. Neutral loss experiments also confirm the existence of these radical anions. Scans for the loss of a selected metal after addition of one of the carboxylic acid salts to the matrix display abundant peaks at mass-to-charge ratio values that correspond to the salt radical anions. Some weaker peaks appear at other mass-to-charge ratio values independent of the salt that is used and also are observed from the matrix when the corresponding metal hydroxide is added. When alkali metal salts from some deuterated acids are analyzed, the predicted shifts are observed. The loss of the neutral metal is more pronounced from RCOONa−., RCOOK−., and RCOORb−. than from RCOOLi−..  相似文献   

17.
The coordinatively unsaturated uranium(IV) complex U[N(C6H5)2]4 has been prepared via the stoichiometric reaction of diphenylamine with [(Me3Si)2N]2 H2. U[N(C6H5)2]4 coordinates Lewis bases such as Et2O, THF, pyridine or (EtO)3PO, based on electronic absorption spectroscopy and 1H NMR studies. Exchange between U[N(C6H5)2]4 and U[N(C6H5)2]4(L), where L is THF or pyridine, is rapid on the NMR time-scale between 307 and 323 K. Measurement of equilibrium constants for L = THF provides ΔH and ΔS values of −60 kJ mol−1 and −1.8 × 102 J K−1 mol−1, respectively. U[N(C6H5)2]4 coordinates and binds (EtO)3PO much more tightly (Keq = & > 104 M−1) than THF or pyridine with the exchange rate between U[N(C6H5)2]4 and U[N(C6H5)2]4[OP(OEt)3] being close to the NMR time-scale.  相似文献   

18.
When heated under reflux in CH2Cl2 solution with [Os(CO)3Cl2]2, two nido-[B9H12] units edge-fuse to form anti-[B18H21].  相似文献   

19.
The oxidation of Cp2MCl2 (M= Mo, W) with perfluortriazinium tetrafluoroborate, [(FCN)3F]+[BF4], in the presence of a flouride ion acceptor (BF3 or PF5) in SO2 solution yielded the cationic metallocene complexes [Cp2MCl 2]2+[BF4] or [Cp2MCl2] 2+[BF4][PF6] (M = Mo, W), respectively. In these reactions, for the first time the perfluortriazinium cation has proved to be easy to handle and a useful oxidizer in organometallic chemistry. The oxidizer strength of three fluorotriazinium cations, [(XCN)3F]+ (X = F, Cl, H), has been computed ab initio (HF/6 − 31 + G) and calibrated on literature data which were obtained by local density functional calculations. It was anchored to its F+ zero point by an experimental value for KrF+. ab]Die Oxidation von Cp2MCl2 mit (M = MO, W) Perfluortriaziniumtetrafluoroborat, [(FCN)3F]+[BF4], in Anwesenheit eines Fluoridionenakzeptors (BF3 oder PF5) führte in SO2-Lösung zur Bildung der kationischen Metallocen-Komplexe [Cp2MCl2+]2+[BF4]2 bzw. [Cp2MCl2]2+[BF4] [PF6] (M = Mo, W). In diesen Reaktionen konnte erstmals gezeigt werden, daß Perfluortriazinium-Kationen einfach zu handhabende und nützliche Oxidationsmittel im Bereich der metallorganischen Synthese darstellen. Das (Mdationsvermögen von drei Fluorotriazinium-Kationen, [(XCN)3F]+(X = F, Cl, H), wurde ab initio berechnet (HF/6 − 31 + G) und mit Hilfe von Literaturdaten, die mittels local density functional-Berechnungen erhalten und am experimentellen Wert von KrF + bezüglich des F+ Nullpunktes verankert wurden, kalibriert.  相似文献   

20.
Using zinc hexamethylenedithiocarbamate (Zn(HMDC)2) and flame atomic absorption spectrometry (FAAS) and/or flow injection hydride generation atomic absorption spectrometry (FI-HGAAS), solvent extraction of As(III) from HCl and H2SO4 media into 2,6-dimethyl-4-heptanone (diisobutyl ketone, DIBK) was examined. Arsenic(III) was quantitatively extracted with 2.41×10−3 mol l−1 Zn(HMDC)2 from about 0.004 (pH 2.4) to 4 mol l−1 HCl and H2SO4 aqueous solutions. The logarithmic conditional extraction constant of As(HMDC)3 in the HCl–DIBK system was determined to be 8.3±0.7, by the measurement of the distribution ratios of Zn(II) and As(III). The effectiveness of the proposed extraction method was ascertained in the determination of As in geochemical standard reference materials supplied by the Geological Survey of Japan. Furthermore, the analysis of arsenic in procedural blanks was 0.083±0.003 μg l−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号