首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The electrophoretic mobility of a spherical charged colloidal particle in an electrolyte solution with large kappaa (where kappa= Debye-Hückel parameter and a= particle radius) tends to a nonzero constant value in the limit of high zeta potential. It is demonstrated that this is caused by the fact that counterions condensed near the highly charged particle surface do not contribute to the electrophoretic mobility and only co-ions govern the mobility. A simple method to derive the limiting electrophoretic mobility expression is given. The present method is also applied to cylindrical particles, showing that the leading term of the limiting electrophoretic mobility of a cylindrical particle in a transverse field with large kappaa is the same as that of a spherical particle. The electrophoretic mobility of a cylindrical particle in a tangential field, on the other hand, is proportional to the particle zeta potential and does not exhibit a constant limiting value for high zeta potentials.  相似文献   

2.
Approximate expressions are derived for the electrophoretic mobility of dilute cylindrical colloidal particles in a salt-free medium containing only counterions. The cylinder is assumed to be infinitely long. It is shown that as in the case of a spherical particle, there is a certain critical value of the particle surface charge separating two cases. When the particle surface charge is lower than the critical value (case 1), the electrophoretic mobility increases with increasing particle surface charge per unit length. When the particle surface charge is higher than the critical value (case 2), the mobility becomes constant (for a cylinder in a transverse field) or the increase in the electrophoretic mobility with the particle surface charge becomes suppressed (for a cylinder in a tangential field). These phenomena are caused by the effect of counterion condensation in the vicinity of the particle surface. The critical value of the particle charge is essentially independent of the particle volume fraction phi for the dilute case, unlike the case of a sphere, in which case the critical charge value is proportional to ln(1/phi).  相似文献   

3.
Ren H. Luo  Huan J. Keh 《Electrophoresis》2021,42(21-22):2134-2142
The electrophoresis and electric conduction of a suspension of charged spherical particles in a salt-free solution are analyzed by using a unit cell model. The linearized Poisson-Boltzmann equation (valid for the cases of relatively low surface charge density or high volume fraction of the particles) and Laplace equation are solved for the equilibrium electric potential profile and its perturbation caused by the imposed electric field, respectively, in the fluid containing the counterions only around the particle, and the ionic continuity equation and modified Stokes equations are solved for the electrochemical potential energy and fluid flow fields, respectively. Explicit analytical formulas for the electrophoretic mobility of the particles and effective electric conductivity of the suspension are obtained, and the particle interaction effects on these transport properties are significant and interesting. The scaled zeta potential, electrophoretic mobility, and effective electric conductivity increase monotonically with an increase in the scaled surface charge density of the particles and in general decrease with an increase in the particle volume fraction, keeping each other parameter unchanged. Under the Debye-Hückel approximation, the dependence of the electrophoretic mobility normalized with the surface charge density on the ratio of the particle radius to the Debye screening length and particle volume fraction in a salt-free suspension is same as that in a salt-containing suspension, but the variation of the effective electric conductivity with the particle volume fraction in a salt-free suspension is found to be quite different from that in a suspension containing added electrolyte.  相似文献   

4.
A theory is proposed for the dynamic electrophoretic mobility mu(omega) of spherical colloidal particles in a salt-free medium containing only counterions in an oscillating electric field of frequency omega. The dynamic mobility depends on the frequency omega of the applied electric field and on the particle volume fraction as well as on the particle surface charge. It is found that as in the case of the static electrophoretic mobility mu(0) in salt-free media, there is a certain critical value of the particle surface charge separating two cases, that is, the low-surface-charge case and the high-surface-charge case (in the latter case the counterion condensation takes place near the particle surface). For the low-surface-charge case, the dynamic mobility agrees with that of a sphere in an electrolyte solution in the limit of very low electrolyte concentrations kappaa-->0 (Hückel's limit), where kappa is the Debye-Hückel parameter and a is the particle radius. For the high-surface-charge case, however, the dynamic mobility becomes constant independent of the particle surface charge, because of the counterion condensation effects. A simple expression for the ratio mu(omega)/mu(0) applicable for all cases is given.  相似文献   

5.
For a highly charged particle in an electrolyte solution, counterions are condensed very near the particle surface. The electrochemical potential of counterions accumulated near the particle surface is thus not affected by the applied electric field, so that the condensed counterions do not contribute to the particle electrophoretic mobility. In the present paper we derive an expression for the electrophoretic mobility mu(infinity) of a highly charged spherical particle of radius a and zeta potential zeta in the limit of very high zeta in a solution of general electrolytes with large ka (where k is the Debye-Hückel parameter) on the basis of our previous theory for the case of symmetrical electrolytes (H. Ohshima, J. Colloid Interface Sci. 263 (2003) 337). It is shown that zeta can formally be expressed as the sum of two components: the co-ion component, zetaco-ion, and the counterion component, zetacounterion (where zeta = zetaco-ion + zetacounterion) and that the limiting electrophoretic mobility mu(infinity) is given by mu(infinity) = epsilonr epsilon0 zetaco-ion(infinity)/eta + 0(1/ka), where zetaco-ion(infinity) is the high zeta-limiting form of zetaco-ion, epsilonr and eta are, respectively, the relative permittivity and viscosity of the solution, and epsilon0 is the permittivity of a vacuum. That is, the particle behaves as if its zeta potential were zetaco-ion(infinity), independent of zeta. For the case of a positively charged particle in an aqueous electrolyte solution at 25 degrees C, the value of zetaco-ion(infinity) is 35.6 mV for 1-1 electrolytes, 46.0 mV for 2-1 electrolytes, and 12.2 mV for 1-2 electrolytes. It is also found that the magnitude of mu(infinity) increases as the valence of co-ions increases, whereas the magnitude of mu(infinity) decreases as the valence of counterions increases.  相似文献   

6.
A theory is proposed for the electrophoretic mobility mu of dilute spherical liquid drops of radius a in salt-free media containing only counterions (e.g., nonaqueous media). As in the case of the electrophoretic mobility of rigid particle in salt-free media, there is a certain critical value of the drop surface charge separating two cases, that is, the low-surface-charge case and the high-surface-charge case. For the low-surface-charge case, mu coincides with that of a drop in an electrolyte solution in the limit of very low electrolyte concentrations kappaa-->0 (Hückel's limit), where kappa is the Debye-Hückel parameter. For the high-surface-charge case, however, mu becomes constant independent of the drop surface charge, since the counterion condensation takes place near the drop surface.  相似文献   

7.
Polyelectrolytes are macromolecules containing dissociable or charged groups. The charge, that is effectively accessible, is determined by counterion condensation, which is strongly influenced by the ionic strength of the solution under study. In general a rapid exchange between free and condensed counterions is expected. In the present study diffusion and electrophoretic mobility of poly(diallyldimethylammoniumchloride) and perfluorinated succinic acid have been monitored simultaneously. Condensation of the perfluorinated succinic acid to the macroion shows in the electrophoretic mobility of succinic acid monitored by pulsed field gradient NMR. In the concentration dependence of the averaged diffusion coefficient and electrophoretic mobility an exchange fast on the time scale of the NMR experiment is manifested.  相似文献   

8.
A relation between the dynamic electrophoretic mobility of spherical colloidal particles in a concentrated suspension and the colloid vibration potential (CVP) generated in the suspension by a sound wave is obtained from the analogy with the corresponding Onsager relation between electrophoretic mobility and sedimentation potential in concentrated suspensions previously derived on the basis of Kuwabara's cell model. The obtained expression for CVP is applicable to the case where the particle zeta potential is low, the particle relative permittivity is very small, and the overlapping of the electrical double layers of adjacent particles is negligible. It is found that CVP shows much stronger dependence on the particle volume fraction φ than predicted from the φ dependence of the dynamic electrophoretic mobility. It is also suggested that the same relation holds between the electrokinetic sonic amplitude of a concentrated suspension of spherical colloidal particles and the dynamic electrophoretic mobility. Copyright 1999 Academic Press.  相似文献   

9.
Huang SW  Hsu JP  Tseng S 《Electrophoresis》2001,22(10):1881-1886
The electrophoretic behavior of a planar particle covered by an ion-penetrable membrane, which simulates a biological entity, is investigated. We show that, in general, a point charge model will overestimate the electrophoretic mobility of a particle and the deviation increases with the increase in the concentration of fixed charge and with the decrease in the thickness of membrane layer. As in the case of a point charge model, the present model also predicts a local maximum in the absolute mobility as the thickness of membrane layer varies. If the sizes of counterions of various valences are the same, then the lower the valence of counterions, the larger the mobility, and the larger the counterions, the greater the mobility. The latter is consistent with the experimental observations in the literature. For the level of the concentration of fixed charge examined, the effect of coions on the mobility is negligible.  相似文献   

10.
The electrophoretic behavior of a spherical dispersion of polyelectrolytes of arbitrary concentration is analyzed theoretically under a salt-free condition, that is, the liquid phase contains only counterions which come from the dissociation of the functional groups of polyelectrolytes. We show that, in general, the surface potential of a polyelectrolyte increases nonlinearly with its surface charge. A linear relation exists between them, however, when the latter is sufficiently small; and the more dilute the concentration of polyelectrolytes, the broader the range in which they are linearly correlated. If the amount of surface charge is sufficiently large, counterion condensation occurs, and the rate of increase of surface potential as the amount of surface charge increases declined. Also, it leads to an inverse in the perturbed potential near the surface of a polyelectrolyte, and its mobility decreases accordingly. For a fixed amount of surface charge, the lower the concentration of polyelectrolytes and/or the lower the valence of counterions, the higher the surface potential. The qualitative behavior of the mobility of a polyelectrolyte as the amount of its surface charge varies is similar to that of its surface charge.  相似文献   

11.
A theory of the dynamic electrophoretic mobility of a spherical soft particle (that is, a polyelectrolyte-coated spherical particle) in an oscillating electric field is presented. In the absence of the polyelectrolyte layer a spherical soft particle becomes a spherical hard particle, while in the absence of the particle core it tends to a spherical polyelectrolyte. The present theory thus covers two extreme cases, that is, dynamic electrophoresis of hard particles and that of spherical polyelectrolytes. Simple analytic mobility expressions are derived. It is shown how the dynamic electrophoretic mobility of a soft particle depends on the volume charge density distributed in the polyelectrolyte layer, on the frictional coefficient characterizing the frictional forces exerted by the polymer segments on the liquid flow in the polyelectrolyte layer, on the particle size, and on the frequency of the applied oscillating electric field. Copyright 2001 Academic Press.  相似文献   

12.
We analyze the influence of finite ion size effects in the response of a salt-free concentrated suspension of spherical particles to an oscillating electric field. Salt-free suspensions are just composed of charged colloidal particles and the added counterions released by the particles to the solution that counterbalance their surface charge. In the frequency domain, we study the dynamic electrophoretic mobility of the particles and the dielectric response of the suspension. We find that the Maxwell-Wagner-O’Konski process associated with the counterions condensation layer is enhanced for moderate to high particle charges, yielding an increment of the mobility for such frequencies. We also find that the increment of the mobility grows with ion size and particle charge. All these facts show the importance of including ion size effects in any extension attempting to improve standard electrokinetic models.  相似文献   

13.
A theory is presented for the electrophoretic mobility mu of dilute spherical soft particles (i.e., polyelectrolyte-coated particles) in salt-free media containing only counterions. As in the case of other types of particles (rigid particles and liquid drops) in salt-free media, there is a certain critical value of the particle charge separating two cases, the low-surface-charge case and the high-surface-charge case. For the low-charge case, the mobility is proportional to the particle charge and coincides with that of a soft particle in an electrolyte solution in the limit of very low electrolyte concentrations kappa-->0 (Hückel's limit), where kappa is the Debye-Hückel parameter. For the high-charge case, however, mu becomes essentially constant, independent of the particle charge, due to the counterion condensation effect.  相似文献   

14.
We present a method to accurately measure the electrophoretic mobility of spherical colloids at high volume fractions in real space using confocal laser scanning microscopy (CLSM) and particle tracking. We show that for polymethylmethacrylate (PMMA) particles in a low-polar, density- and refractive-index-matched mixture of cyclohexylbromide and cis-decahydronaphthalene, the electrophoretic mobility decreases nonlinearly with increasing volume fraction. From the electrophoretic mobilities, we calculate the ζ-potential and the particle charge with and without correcting for volume fraction effects. For both cases, we find a decreasing particle charge as a function of volume fraction. This is in accordance with the fact that the charges originate from chemical equilibria that represent so-called weak association and/or dissociation reactions. Finally, as our methodology also provides data on particle self-diffusion in the presence of an electric field, we also analyze the diffusion at different volume fractions and identify a nonlinear decreasing trend for increasing volume fraction.  相似文献   

15.
In a recent work [J. Colloid Interface Sci. 316 (2007) 196] we studied the influence of the excluded volume effect on spatial distributions of ionic species and electrostatic potential in the neighborhood of a suspended spherical particle. It was shown that the excluded volume effect considerably increases the surface potential (for a given value of the particle charge) as compared to the case when ideal ion behavior is assumed. In the present work we extend our previous equilibrium results to the perturbed/nonequilibrium problem and analyze the effect of ion size constraints on the electrophoretic mobility of a rigid spherical particle immersed in a general electrolyte solution. We find that the electrophoretic mobility always increases with the excluded volume effect, which might broaden the range of experimental data that can be interpreted, including those cases where the measured mobility exceeded the theoretical maximum value predicted by the standard model.  相似文献   

16.
Carboxylated ficolls were prepared as model spherical colloids of variable charge and size, with radii ranging from 3.0 to 19.3 nm. Capillary electrophoresis (CE), electrophoretic light scattering (ELS), and potentiometric titration were used to determine mobilities as a function of pH, degree of ionization alpha, and surface potential psi(0). Measured mobilities typically display a plateau at high pH, corresponding to high alpha and psi(0), confirming the general nature of this effect for charged spheres, seen also for charged dendrimers and charged latex particles. This result is examined in the context of a discontinuity in mobility predicted by the Wiersema, O'Brien, and White (WOW) theory and a more recent primitive model electrophoresis (PME) theory, in which bound counterions are considered either as point charges or as hard spheres. While no mobility maximum can be determined as expected by these two theories, our data seem more to support Belloni's theoretical expectations on charged polymers and spheres. Here we explain the mobility plateaus in terms of counterions accumulated close to the surface (surface potential-determining ions) or within the shear plane (mobility-determining ions).  相似文献   

17.
Yi C. Lai  Huan J. Keh 《Electrophoresis》2021,42(21-22):2126-2133
The startup of electrophoretic motion in a suspension of spherical colloidal particles, which may be charged with constant zeta potential or constant surface charge density, due to the sudden application of an electric field is analytically examined. The unsteady modified Stokes equation governing the fluid velocity field is solved with unit cell models. Explicit formulas for the transient electrophoretic velocity of the particle in a cell in the Laplace transforms are obtained as functions of relevant parameters. The transient electrophoretic mobility is a monotonic decreasing function of the particle-to-fluid density ratio and in general a decreasing function of the particle volume fraction, but it increases and decreases with a raise in the ratio of the particle radius to the Debye length for the particles with constant zeta potential and constant surface charge density, respectively. On the other hand, the relaxation time in the growth of the electrophoretic mobility increases substantially with an increase in the particle-to-fluid density ratio and with a decrease in the particle volume fraction but is not a sensitive function of the ratio of the particle radius to the Debye length. For specified values of the particle volume fraction and particle-to-fluid density ratio in a suspension, the relaxation times in the growth of the particle mobility in transient electrophoresis and transient sedimentation are equivalent.  相似文献   

18.
When the electrophoretic mobility of a particle in an electrolyte solution is measured, the obtained electrophoretic mobility values are usually converted to the particle zeta potential with the help of a proper relationship between the electrophoretic mobility and the zeta potential. For a particle with constant surface charge density, however, the surface charge density should be a more characteristic quantity than the zeta potential because for such particles the zeta potential is not a constant quantity but depends on the electrolyte concentration. In this article, a systematic method that does not require numerical computer calculation is proposed to determine the surface charge density of a spherical colloidal particle on the basis of the particle electrophoretic mobility data. This method is based on two analytical equations, that is, the relationship between the electrophoretic mobility and zeta potential of the particle and the relationship between the zeta potential and surface charge density of the particle. The measured mobility values are analyzed with these two equations. As an example, the present method is applied to electrophoretic mobility data on gold nanoparticles (Agnihotri, S. M.; Ohshima, H.; Terada, H.; Tomoda, K.; Makino, K. Langmuir 2009, 25, 4804).  相似文献   

19.
The transient electrophoretic response of a homogeneous suspension of spherical particles to the step application of an electric field is analyzed. The electric double layer encompassing each particle is assumed to be thin but finite, and the effect of dynamic electroosmosis within it is incorporated. The momentum equation for the fluid outside the double layers is solved through the use of a unit cell model. Closed‐form formulas for the time‐evolving electrophoretic and settling velocities of the particles in the Laplace transform are obtained in terms of the electrokinetic radius, relative mass density, and volume fraction of the particles. The time scale for the development of electrophoresis and sedimentation is significantly smaller for a suspension with a higher particle volume fraction or a smaller particle‐to‐fluid density ratio, and the electrophoretic mobility at any instant increases with an increase in the electrokinetic particle radius. The transient electrophoretic mobility is a decreasing function of the particle volume fraction if the particle‐to‐fluid density ratio is relatively small, but it may increase with an increase in the particle volume fraction if this density ratio is relatively large. The particle interaction effect in a suspension on the transient electrophoresis is much weaker than that on the transient sedimentation of the particles.  相似文献   

20.
The electrophoretic migration of a highly charged spherical macroion suspended in an aqueous solution of NaCl is studied using the molecular dynamic method. The objective is to examine the effects of the colloidal surface charge density on the electrophoretic mobility (μ) of the spherical macroion. The bare charge and the size of the macroion are varied separately to induce changes in the colloidal surface charge density. Our results indicate that μ depends on colloidal surface charge density in a nonmonotonic manner, but that this relationship is independent of the way the surface charge density is varied. It is found that an increase in colloidal surface charge density may lead to the formation of new sublayers in the Stern layer. The μ profile is also found to have a local maximum for a bare charge at which a new sublayer is formed in the Stern layer, and a local minimum for a bare charge at which the outer sublayer becomes relatively dense. Finally, the electrophoretic flow caused by the migration of the spherical macroion is studied to find that one decisive factor causing the electrophoretic flow is the ability of the macroion to carry anions in the electrolyte solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号