首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Starting from an analysis of filler networking in bulk polymers, a constitutive micro-mechanical model of stress softening and hysteresis of filler reinforced polymer networks is developed. It refers to a non-affine tube model of rubber elasticity, including hydrodynamic amplification of the rubber matrix by a fraction of hard, rigid filler clusters with filler-filler bonds in the unbroken, virgin state. The filler-induced hysteresis is described by an anisotropic free energy density, considering the cyclic breakdown and re-aggregation of the residual fraction of soft filler clusters with already broken, damaged filler-filler bonds. Experimental investigations of the quasi-static stress-strain behaviour of silica and carbon black filled rubbers up to large strain agree well with adaptations found by the developed model. The microscopic material parameters obtained appear reasonable, providing information on the mean size and distribution width of filler clusters, the tensile strength of filler-filler bonds and the polymer network chain density.  相似文献   

2.
3.
The stress-strain behaviour of multigraft copolymers consisting of a polyisoprene (PI) backbone and grafted polystyrene (PS) arms have been characterized by applying models of rubber elasticity such as Mooney-Rivlin, slip-tube and the extended non-affine tube model. Additionally, the range of low deformation has been investigated by relaxation tests for determining the stress relaxation. Multigraft copolymers show high strain at break and low residual strain caused by the large number of physical cross links resulting from several grafted PS side chains. From the model fits the material parameters and of the slip-tube model, representing the influence of chemical cross links and entanglements effects, respectively, and the ne/Te-value (ne - number of statistical segments between two successive entanglements, Te - Langley trapping factor) of the extended non-affine tube model, are used to describe the tensile behaviour of these thermoplastic elastomers. The PS content was considered as filler phase taking into account the effect of hydrodynamic amplification. The influence of functionality and the number of branch points per molecule on the strain at break and the tensile strength is explained by the model parameters describing the stress-strain curve at low to medium (?400%, slip-tube, Mooney-Rivlin) and low to high (?900%, extended non-affine tube) elongations. It was observed that for the material with a spherical morphology is increasing with the number of branch points β (each branch point consists of a PI backbone segment, depending on the functionality one, two or four grafted PS arms). For cylindrical and lamellar morphologies the was decreasing with increasing β, which could be reconfirmed by applying the extended non-affine tube model where the ne/Te-parameter is increasing with β.  相似文献   

4.
F. Fleck  V. Froltsov 《Soft Materials》2014,12(4):S121-S134
The effect of polymer-filler interaction on interphase dynamics between filler particles in elastomer nanocomposites and the mechanisms of rubber reinforcement by carbon black (CB) are investigated with different techniques. To determine how polymer-filler interface influences the properties of the system, CB black was modified with the ionic liquid (IL) 1-allyl-3-methylimidazolium chloride (AMIC) and mixed with different, more or less, polar elastomers. For typical diene-elastomers (EPDM, SBR), this modification leads to a decreased polymer-filler coupling strength due to the coverage of active sites at the CB surface by AMIC. This is demonstrated by evaluating the energy site distribution from static gas adsorption isotherms with the polymer analogues gas 1-Butene. However, an improvement of polymer filler coupling was determined in the case of saturated, polar rubbers (HNBR) due to attractive dipolar interactions between the polar units of the polymer and the strongly adsorbed IL at the CB surface. The different couplings affect the polymer-filler interphase dynamics between filler particles, which determines the properties of the filler network and filler-filler bonds. To describe the effect of CB surface modification quantitatively, the Dynamic Flocculation Model (DFM) has been used to calculate polymer- and filler-specific material parameters from cyclic stress-strain measurements. The fitted data deliver a coherent picture of filler-filler- and polymer-filler couplings showing a characteristic dependence on rubber polarity. A confirmation of the effect of surface modification on the strength of filler-filler bonds is obtained by nonequilibrium molecular dynamics (MD) simulations of bond rupture under tension. They also provide indications for a glassy-like behavior of strongly confined polymer layers between attractive walls.  相似文献   

5.
The latex blending method was chosen to prepare Kaolinite/emulsion-polymerization styrene butadiene rubber (ESBR) nanocomposite to improve the interaction between filler particles and rubber matrix chains. The influences of kaolinite particles size, filler contents, and flocculants types on dynamic mechanical properties and the relative reinforcement mechanism of the prepared composite were systematic investigated and proposed. The transmission electron microscopy (TEM) and scanning electron microscopy (SEM) showed that the kaolinite particles were finely dispersed into the rubber matrix and arranged in parallel orientation. The prepared nanocomposites by latex blending exhibited improved crosslinking characteristic and dynamic mechanical parameters. The KAl (SO4)2 flocculant presented obvious modification in dynamic properties and crosslinking characteristic. Both the decrease in kaolinite particle size and the increase in kaolinite content can greatly improve the storage modulus and reinforcing effect of kaolinite/ESBR nanocomposites. The dynamic reinforcement mechanism of kaolinite can be explained by filler network including a certain thickness of rubber shell on the surface of kaolinite lamellar structure and the aggregations network between kaolinite particles The optimum way to balance the dynamic properties of rubber nanocomposites at different temperatures is to reduce the surface difference between kaolinite and rubber matrix and the degree of filler-filler networking on the basis of kaolinite with nanoscale (nanometer effect).  相似文献   

6.
郭林 《高分子科学》2016,34(4):457-465
The viscoelastic properties of synthetic polyisoprenes(PI) reinforced by white carbon black(WCB) have been investigated and compared with WCB reinforced natural rubber(NR), including cure characteristics, physio-mechanical and dynamic mechanical properties. Compared with NR, PI loaded with the same amount of WCB(PI/WCB) exhibited shorter scorch time and optimal cure time, indicating that WCB fillers are comparatively easier to conjugate with PI. The tensile strength and elongation at break decreased with WCB filling in both PI and NR vulcanizates. The hardness of the rubber vulcanizates increased with the WCB filling in the rubber matrix. PI/WCB blends exhibited smaller hardness data, lower tensile strength, as well as lower elongation at break and tensile stress. Increasing the amount of WCB in rubber matrix induced the Payne effect. However, the Payne effect is much more obvious for the PI/WCB system, and PI/WCB also displayed higher storage modulus whereas lower loss modulus and loss tangent than NR/WCB, which could all be attributed to the poor dispersibilities of WCB in the PI matrix.  相似文献   

7.
We tried to use a new kind of filler with “core-shell” structure as a crosslinking agent for carboxylated butadiene-acrylonitrile rubber. We thought that the substance would be better dispersed in the polymer matrix than zinc oxide. Silica (ZnO/SiO2) whose surface was modified with amorphous zinc oxide from zinc nitrate was used. Its properties were investigated using gas chromatography. Finally we obtained unconventional networks containing ionic and complex bonds (as a result of reaction of elastomers' functional groups i.e. carboxyl groups with the appropriate neutralizing agent as metal oxide). Ionic clusters were formed in vulcanizates which influenced the mechanical properties and crosslinking efficiency. We confirmed the presence of these unconventional bonds by IR spectroscopy and DMTA analyses.  相似文献   

8.
Styrene butadiene rubber (SBR) composites filled with fillers, such as modified kaolinite (MK), precipitated silica (PS), and the hybrid fillers containing MK and PS, were prepared by melt blending. The kaolinite sheets were finely dispersed in the SBR matrix around 20–80 nm in thickness and reached the nano-scale. The SBR composites with fillers exhibited excellent thermal stability compared to the pure SBR. The thermal stability of SBR composites was improved with the increasing of MK mass fraction. When MK hybridized with PS, kaolinite sheets were covered by the fine silica particles and the interface between filler particles and rubber matrix became more indistinct. SBR composite filled by hybrid fillers containing 40 phr MK and 10 phr PS became more difficult in decomposition and was better than that of 50 phr PS/SBR and 50 phr MK/SBR in thermal stability. Therefore, the hybridization of the fine silica particles with the kaolinite particles can effectively improve the thermal stability of SBR composites.  相似文献   

9.
The performance of plasma surface modified silica filler in styrene‐butadiene rubber (SBR) matrix has been analyzed. The conditions of plasma modification have been optimized by taking secant modulus as a standard parameter and the occurrence of the modification has been confirmed by surface area determination and Fourier transform infrared spectroscopy. The plasma‐modified surface of silica has been found to be composed of carbon–carbon double bonds and carbon–hydrogen bonds. Silane treatment also has been carried out on silica filler surface for a comparative assessment of its influence in the curing behavior and filler–rubber interaction. The cure reactions of all the rubber compounds have been found to be proceeded according to first‐order kinetics. A reduction in the cure reaction rate constant has been observed with the loading of unmodified and surface modified silica, emphasizing the cure deactivation of the matrix rubber by the silica filler. The filler dispersion, as revealed by scanning electron microscopy, has been found to be greatly improved by the plasma as well as silane treatment. The filler–rubber interaction has been found to be greatly improved by both surface treatments, but the best balance of mechanical properties has been observed with plasma surface modification only. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

10.
The birefringence change occuring upon stretching a rubber containing spherical isotropic filler particles is calculated as a function of the volume fraction of the filler. The stress concentration arising from the presence of the filler particles leads to an enhanced birefringence of the rubber. From a consideration of the detailed birefringence pattern about a spherical particle within a stretched rubber, the enhancement of the retardation is calculated as a function of the volume fraction of the filler particles.  相似文献   

11.
The preparation and characterization of polymer blends with structured natural rubber (NR)-based latex particles are presented. By a semicontinuous emulsion polymerization process, a natural rubber latex (prevulcanized or not) was coated with a shell of crosslinked polymethylmethacrylate (PMMA) or polystyrene (PS). Furthermore, core–shell latexes based on a natural rubber/crosslinked PS latex semi-interpenetrating network were synthesized in a batch process. These structured particles were incorporated as impact modifiers into a brittle polymer matrix using a Werner & Pfleiderer twin screw extruder. The mechanical properties of PS and PMMA blends with a series of the prepared latexes were investigated. In the case of PMMA blends, relatively simple core (NR)–shell (crosslinked PMMA) particles improved the mechanical properties of PMMA most effectively. An intermediate PS layer between the core and the shell or a natural rubber core with PS subinclusions allowed the E-modulus to be adjusted. The situation was different with the PS blends. Only core–shell particles based on NR-crosslinked PS latex semi-interpenetrating networks could effectively toughen PS. It appears that microdomains in the rubber phase allowed a modification of the crazing behavior. These inclusions were observed inside the NR particles by transmission electron microscopy. Transmission electron photomicrographs of PS and PMMA blends also revealed intact and well-dispersed particles. Scanning electron microscopy of fracture surfaces allowed us to distinguish PS blends reinforced with latex semi-interpenetrating network-based particles from blends with all other types of particles.  相似文献   

12.
Acrylonitrile butadiene rubber (NBR) compounds filled with different concentrations of graphite nanoplatelets were experimentally investigated. The stress–strain curves of the nanocomposites were studied, which suggest good filler–matrix adhesion. The large reinforcement effect of the filler followed the Guth model for non‐spherical particles. The effect of graphite nanoplatelets on the cyclic fatigue and hysteresis was also examined. The loading and unloading stress–strain relationships for any cycle were described by applying Ogden's model for rubber nanocomposites. With this model for incompressible materials, expressions may be developed to predict the stress–strain relationship for any given cycle. The dissipated energy increased with graphite nanoplatelets concentrations and decrease with number of cycles. The rate of damage accumulation becomes marginal after first ten cycles. The rate of damage increases as the amount of graphite nanoplatelets increase into the rubber matrix. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
A microstructure‐based model of rubber reinforcement is presented describing filler‐induced stress softening and hysteresis by the breakdown and re‐aggregation of strained filler clusters. An extension of the previously introduced dynamic flocculation model, it considers incomplete deformation cycles that occur in the simulation of arbitrary deformation histories. For these inner cycles additional elastic stress contributions of clusters are taken into account. A constitutive generalization of the model is introduced by referring to the engineering concept of representative directions. This allows for an implementation of the model into FE codes. Fair agreement between measurement and simulation is obtained for CB‐filled EPDM, loaded along various deformation histories.

  相似文献   


14.
The dilute solution properties of three (PS)8(PI)8 miktoarm (Vergina) stars were investigated by viscometry and dynamic light scattering in toluene and tetrahydrofuran (THF) (common good solvents), cyclohexane at 34.5°C (theta solvent for PS and good for PI) and dioxane at 34°C (theta solvent for PI and good for PS). Experimental intrinsic viscosity [η] and hydrodynamic radii, Rh, values in all solvents were larger for the miktoarm stars in comparison to the calculated ones using a simple model which describes the size of the copolymers as a weighted average of the sizes of the homopolymer stars with the same total molecular weight and number of arms as the copolymer. This expansion is discussed on the basis of the increased number of heterocontacts, the topological constrains imposed by the common junction point in this highly branched miktoarm architecture and the asymmetry in molecular weights of the different kinds of arms. The conformation adopted in dilute solutions can explain, to some extent, the morphological results obtained on the same materials. The ratios of viscometric to hydrodynamic radii are consistent with previous investigations on linear and star polymers and in accord with the hard sphere model. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 1329–1335, 1999  相似文献   

15.
Developing conductive networks in a polymer matrix with a low percolation threshold and excellent mechanical properties is desired for soft electronics applications. In this work, natural rubber (NR) functionalized with poly(methyl methacrylate) (PMMA) was prepared for strong interfacial interactions with multiwalled carbon nanotubes (MWCNT), resulting in excellent performance of the natural rubber nanocomposites. The MWCNT and methyl methacrylate functional groups gave good filler dispersion, conductivity and tensile properties. The filler network in the matrix was studied with microscopy and from its non-linear viscoelasticity. The Maier-Göritze approach revealed that MWCNT network formation was favored in the NR functionalized with PMMA, with reduced electrical and mechanical percolation thresholds. The obvious improvement in physical performance of MWCNT/methyl methacrylate functionalized natural rubber nanocomposites was caused by interfacial interactions and reduced filler agglomeration in the NR matrix. The modification of NR with poly(methyl methacrylate) and MWCNT filler was demonstrated as an effective pathway to enhance the mechanical and electrical properties of natural rubber nanocomposites.  相似文献   

16.
The aim of this paper is to demonstrate that the stress–strain behavior of natural rubber reinforced with short pineapple leaf fiber (PALF) can easily be manipulated by changing the cross-link density and the amount of carbon black (CB) primary filler. This gives more manageable control of mechanical properties than is possible with conventional particulate fillers alone. This type of hybrid rubber composite displays a very sharp rise in stress at very low strains, and then the stress levels off at medium strains before turning up again at the highest strains. The composites studied here contain a fixed amount of PALF at 10 part (by weight) per hundred rubber (phr) and varying carbon black contents from 0 to 30 phr. To change the cross-link density, the amount of sulfur was varied from 2 to 4 phr. Swelling ratio results indicate that composites prepared with greater amounts of sulfur and carbon black have greater cross-link densities. Consequently, this affects the stress–strain behavior of the composites. The greater the cross-link density, the less is the strain at which the stress upturn occurs. Variations in the rate of stress increase (although not the stress itself) in the very low strain region, while dependent on fillers, are not dependent on the crosslink density. The effect of changes in crosslinking is most obvious in the high strain region. Here, the rate of stress increase becomes larger with increasing cross-link density. Hence, we demonstrate that the use of PALF filler, along with the usual carbon primary filler, provides a convenient method for the manipulation of the stress–strain relationships of the reinforced rubber. Such composites can be prepared with a controllable, wide range of mechanical behavior for specific high performance engineering applications.  相似文献   

17.
In this article, the preparation of nanosized core-shell particles to induce ductility in polystyrene (PS) is described. FTIR spectroscopy, solid-state NMR spectroscopy, and DSC were used to examine the extent of miscibility of PS and poly(butylacrylate)-b-polyolefin diblock copolymers in a blend in which PS was chemically modified by copolymerization with 0.5–5 mol % of p-(hexafluoro-2-hydroxy isopropyl) styrene (HFS). Hydrogen bonding between the hydroxyl-groups and the carbonyl-groups of polybutylacrylate enhanced the miscibility and lead to randomly distributed polyolefin particles surrounded by a homogeneous PBA/PS matrix. Morphological parameters such as the size of the dispersed phase or extent of interpenetration between the components are controllable simply by changing the amount of interacting groups in the blend. The mechanical properties of the prepared blends were also studied. The intrinsic deformation behavior was investigated by compression tests, whereas the microscopic mode of deformation was studied by time-resolved small-angle X-ray scattering. It was shown that the macroscopic strain at break depends to a large extent on the diblock copolymer content and the degree of demixing between the rubber shell and PS matrix. Brittle behavior was observed for PS blends that contain more than 3 mol % HFS and show complete miscibility between the PS matrix and acrylate shell. For the blends showing partial miscibility, the compression tests demonstrated a pronounced decrease in strain softening with increasing diblock copolymer concentration. Furthermore, it was illustrated that dependent on the degree of demixing the microscopic deformation mode changes from crazing to cavitation induced shear yielding. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2137–2160, 2004  相似文献   

18.
The combination of anionic polymerization and controlled chlorosilane chemistry made possible for the first time the synthesis of model 3‐miktoarm star terpolymers of styrene (PS), isoprene (PI) and 2‐vinylpyridine (P2VP) (3μ‐SIV). The morphology of a nearly symmetric 3μ‐SIV star terpolymer, was also studied. From the preliminary results, it seems that the PI and P2VP phases form hexagonally packed adjoined cylinders, whereas the PS phase occupies the remaining space forming non‐regular curved hexagons, hexagonally packed as well. The star junction points reside on periodically spaced, parallel lines defined by the intersection of the three microdomain interfaces. Non of the phases form the matrix. The star molecular architecture gives the molecule the ability to “choose” which arms directly interact in the microphase segregate state, in order to minimize the most highly unfavorable contact between the PI and P2VP arms.  相似文献   

19.
As a widely used reinforcing filler of rubber, carbon black(CB) often enhances the nonlinear Payne effect and its mechanism still remains controversial. We adopt simultaneous measurement of rheological and electrical behaviors for styrene-butadiene rubber(SBR)/CB compounds and CB gel(CBG) during large deformation/recovery to investigate the contribution of conductive CB network evolution to the Payne effect of the compounds. In the highly filled compounds, the frequency dependence of their strain softening behavior is much more remarkable than that of their CB network breakdown during loading, while during unloading the unrecoverable filler network hardly affects the complete recovery of modulus, both revealing that their Payne effect should be dominated by the disentanglement of SBR matrix. Furthermore,the bound rubber adjacent to CB particles can accelerate the reconstruction of continuous CB network and improve the reversibility of Payne effect. This may provide new insights into the effect of filler network, bound rubber, and free rubber on the Payne effect of CB filled SBR compounds.  相似文献   

20.
The effect of the concentration of the dispersed elastic filler on the lower yield stress of matrix composites based on plastic polymers is studied. As the matrix polymers, LDPE-HDPE and LDPE-(medium-density PE) are used. The elastic filler is rubber crumb prepared by roll grinding of worn tires or by deformation grinding of ethylene-propylene-diene rubber. Irrespective of the type of filler particles and their adhesion to the polymer matrix, the lower yield stress σd of the composite is described by the linear law σd = σdm(1 ? V f ), where σdm is the lower yield stress of the polymer matrix and V f is the volume content of the filler. Analysis of the published data shows that this relationship is quite general and describes the effect of rigid inorganic particles on the lower yield stress when adhesion between the filler particles and the matrix is poor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号