首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Poly(methylmetacrylate)/montmorillonite (PMMA)/(MMT) nanocomposites were prepared by one-step in situ intercalative solution polymerization involving simultaneous modification of MMT with quaternary ammonium salts (QAS), polymerization and polymer intercalation. Polymerization proceeded at 70 °C in a mixture of ethanol and water, whereas the nanocomposite was precipitated with only water. Four QAS’s with different alkyl chain lengths, as well as a QAS with an additional acrylic group, were used to study the influence of the type of quaternary ammonium salt on intercalation. The largest extent of intercalation was achieved in nanocomposites with the QAS having one long alkyl (C16) chain. The obtained PMMA/MMT intercalated nanocomposites exhibited a higher glass transition temperature, better thermal stability, and improved solvent resistance than the pure PMMA.  相似文献   

2.
采用胶乳接枝插层法,引入单体,制备了天然橡胶蒙脱土聚丙烯酸丁酯纳米复合材料.X射线衍射(XRD)和透射电镜(TEM)结果表明,在单体丙烯酸丁酯(BA)的作用下,改性蒙脱土片层被进一步撑大,并在橡胶基体中以纳米级分散;动态粘弹谱(DMA)测定结果显示,该体系的玻璃化温度有所提高,且60℃时具有较低的tanδ值,说明具有较小的滚动阻力;物理机械性能测试表明该方法有效地实现了对天然橡胶的补强.  相似文献   

3.
In this work, new polyoxymethylene (POM)/hydroxyapatite (HAp) nanocomposites for long‐term bone implants have been obtained via extrusion and injection molding processes and characterized by differential scanning calorimetry (DSC), temperature‐modulated DSC (TMDSC), scanning electron microscopy (SEM), transmission electron microscopy (TEM), wide‐angle X‐ray diffraction (WAXD), Fourier transform infrared spectroscopy (FTIR), thermogravimetry (TG), and tensile mechanical and in vitro stability tests. Based on the DSC results, it was found that the degree of crystallinity increases for POM/0.5% HAp sample and decreases for POM/1.0% HAp and POM/2.5% HAp. SEM and TEM observations for POM/HAp nanocomposites indicated that the dispersion of HAp in the polymer matrix was uniform and the diameter of the HAp particles was less than 100 nm for most of them. Young's modulus increases with increasing HAp concentration, whereby elongation at break decreases. On the contrary, HAp concentration does not have a significant influence on the tensile strength. TG results show that for POM/0.5% HAp, POM/1.0% HAp, and POM/2.5% HAp, thermal stability slightly increases in comparison to pure POM, whereas for POM/5.0 HAp and POM/10.0% HAp, lower thermal stability was observed. In vitro data reveal that with an increase of HAp content, bioactivity of nanocomposites increases; a good in vitro chemical stability of POM and POM nanocomposites was confirmed. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
Unsaturated polyester resin (UPR)/acrylate-terminated polyurethane (ATPU)/organo-modified montmorillonite (OMMT) nanocomposites were prepared by the in situ intercalative polymerization method. Samples were prepared by the sequential mixing, i.e. mixture of the ATPU and styrene (S) and OMMT were prepared in the first step; UPR was then added to the pre-intercalates of ATPU/S/OMMT. Results indicate that the mechanical properties and thermal properties of UPR/ATPU/OMMT nanocomposites greatly depend on the amount of ATPU and OMMT. Results show that the addition of ATPU could increase the impact strength of UPR/ATPU composites, but the tensile strength, flexural strength and heat resistance of the materials are obviously decreased. When the weight ratio between UPR, ATPU and OMMT were 82:15:3, the impact strength and heat distortion-temperature of nanocomposite were greatly improved, meanwhile there was little change for other properties of the nanocomposites. The synergistic enhancement effects of ATPU and OMMT on the composites were observed. The structures and morphology of the composites were investigated by X-ray diffraction, scanning electron microscopy and transmission electron microscopy.  相似文献   

5.
Organophilic montmorillonite (OMMT) was synthesized by cationic exchange between Na-MMT and tricetadecylmethyl ammonium bromide in an aqueous solution. A new nanocomposite consisting of poly(butyl acrylate)-modified chitosan and OMMT was prepared by γ-ray irradiation polymerization in acetic acid aqueous solution. The degree of dispersion and the intercalation spacing of these nanocomposites were investigated using X-ray diffraction. The enhanced thermal stabilities of nanocomposites were characterized by the thermal gravimetric analysis. The improved mechanical properties of nanocomposites were characterized by static tensile studies and dynamic mechanical analysis. The nanocomposites showed improved resistance to water absorption.  相似文献   

6.
Waterborne polyurethane (WBPU) sol–gel adhesives were prepared through a prepolymer process followed by a sol–gel reaction of (3-aminopropyl)triethoxysilane (APTES). The terminal amine group of APTES reacted with the NCO group of the prepolymer, and the ethoxy group created Si–O–Si branching by hydrolysis and condensation reactions in water at the dispersion step. Water swelling (%), tensile strength and Young’s modulus of the synthesized WBPU sol–gel adhesives were improved by increasing APTES content. Synthesized WBPU sol–gel adhesives were used for bonding nylon fabrics. A significant improvement in adhesive strength was recorded, and the potential for good adhesive strength under water at moderately high temperature (up to 75 °C) was observed with 6.84 mol% APTES in WBPU sol–gel adhesives.  相似文献   

7.
A series of waterborne polyurethane (WBPU)/multiwalled carbon nanotube (CNT) and WBPU/nitric acid treated multiwalled carbon nanotube (A‐CNT) composites were prepared by in situ polymerization in an aqueous medium. The optimum nitric acid treatment time was about 0.5 h. The effects of the CNT and A‐CNT contents on the dynamic mechanical thermal properties, mechanical properties, hardness, electrical conductivity, and antistatic properties of the two kinds of composites were compared. The tensile strength and modulus, the glass‐transition temperatures of the soft and hard segments (Tgs and Tgh, respectively), and ΔTg (TghTgs) of WBPU for both composites increased with increasing CNT and A‐CNT contents. However, these properties of the WBPU/A‐CNT composites were higher than those of the WBPU/CNT composites with the same CNT content. The electrical conductivities of the WBPU/CNT1.5 and WBPU/A‐CNT1.5 composites containing 1.5 wt % CNTs (8.0 × 10−4 and 1.1 × 10−3 S/cm) were nearly 8 and 9 orders of magnitude higher than that of WBPU (2.5 × 10−12 S/cm), respectively. The half‐life of the electrostatic charge (τ1/2) values of the WBPU/CNT0.1 and WBPU/A‐CNT0.1 composites containing 0.1 wt % CNTs were below 10 s, and the composites had good antistatic properties. From these results, A‐CNT was found to be a better reinforcer than CNT. These results suggest that WBPU/A‐CNT composites prepared by in situ polymerization have high potential as new materials for waterborne coatings with good physical, antistatic, and conductive properties. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3973–3985, 2005  相似文献   

8.
Based on the solvent-free method, novel fluorinated polyurethane/polyacrylate hybrid emulsions, dodecafluoroheptyl methacrylate (DFMA) as fluorinated monomer, were successfully prepared via emulsion polymerization without traditional emulsifier. For the purpose of increasing the grafting ratio of polyurethane and polyacrylate, 60Co γ-ray radiation polymerization had been adopted to enhance the hardness of latex film. The chain structure and polymerization progress were confirmed by the analysis of Fourier transform infrared spectroscopy. The grafting ratio of polymethyl methacrylate and polyurethane was obtained by calculating the ratio of N–H peak integral area and Ph(C=C) peak integral area. The effect of DFMA content on thermal stability, mechanical property and water resistance were investigated systematically by thermal weight loss analysis, tensile strength test, absorbed water ratio and water contact angle.  相似文献   

9.
Ternary Ag/Polyaniline/Au nanocomposites were synthesized successfully by immobilizing of Au nanoparticles (NPs) on the surface of Ag/Polyaniline (PANI) nanocomposites. Ag/PANI nanocomposites were prepared via in situ chemical polymerization of aniline in the presence of 4-aminothiophenol (4-ATP) capped silver colloidal NPs. Then, uniform gold (Au) NPs were assembled on the surface of resulted Ag/PANI nanocomposites through electrostatic interaction to get Ag/Polyaniline/Au nanocomposites. The nanocomposites were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDX), ultraviolet visible spectroscopy (UV-Vis), thermogravimetric analysis (TGA) and Fourier transform infrared spectroscopy (FTIR). Moreover, Ag/PANI/Au nanocomposites were immobilized on the surface of a glassy carbon electrode and showed enhanced electrocatalytic activity for the reduction of H2O2 compared with Ag/PANI.  相似文献   

10.
Linear isocyanate‐terminated poly(urethane‐imide) (PUI) with combination of the advantages of polyurethane and polyimide was directly synthesized by the reaction between polyurethane prepolymer and pyromellitic dianhydride (PMDA). Then octaaminophenyl polyhedral oligomeric silsesquioxane (OapPOSS) and PUI were incorporated into the epoxy resin (EP) to prepare a series of EP/PUI/POSS organic–inorganic nanocomposites for the purpose of simultaneously improving the heat resistance and toughness of the epoxy resin. Their thermal degradation behavior, dynamic mechanical properties, and morphology were studied with thermal gravimetric analysis (TGA), dynamic mechanical analysis (DMA), and transmission electron microscope (TEM). The results showed that the thermal stability and mechanical modulus was greatly improved with the addition of PUI and POSS. Moreover, the EP/PUI/POSS nanocomposites had lower glass transition temperatures. The TEM results revealed that POSS molecules could self assemble into strip domain which could switch to uniform dispersion with increasing the content of POSS. All the results could be ascribed to synergistic effect of PUI and POSS on the epoxy resin matrix. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
Polyurethane/Cellulose nanocrystal (CNC) nanocomposites have been prepared by means of in situ polymerization using CNCs as precursors of polyurethane chains. Thermal, mechanical and morphological characterization has been analyzed to study the effect of CNC on the micro/nanostructure, which consisted of individualized nanocellulose crystallites covalently bonded to hard and soft segments of polyurethane. The incorporation of low CNC content led to a tough material whereas higher amount of CNC provoked an increase in soft and hard segments crystallization phenomenon. Moreover, from the viewpoint of polyurethane and polyurethane nanocomposites applications focused on biomedical devices, biocompatibility studies can be considered necessary to evaluate the influence of CNC on the biological behaviour. SEM micrographs obtained from cells seeded on top of the materials showed that L-929 fibroblasts massively colonized the materials surface giving rise to good substrates for cell adhesion and proliferation and useful as potential materials for biomedical applications.  相似文献   

12.
Multi-walled carbon nanotubes (MWCNT)/poly(methyl methacrylate) (PMMA) nanocomposites were synthesized by the in situ reversible addition-fragmentation chain transfer (RAFT) polymerization of methyl methacrylate (MMA) in the presence of MWCNTs, at which the bulk polymer was grafted onto the surface of nanotubes through the ??grafting through?? strategy. For this purpose, MWCNTs were formerly functionalized with polymerizable MMA groups. MMA and PMMA-grafted MWCNTs were characterized by Fourier-transform infrared spectroscopy, Raman, X-ray photoelectron spectroscopy, transmission electron microscopy (TEM), and thermogravimetric analysis (TGA). Dissolution of nanotubes was examined in chloroform solvent and studied by UV?Cvis spectroscopy. Thermogravimetric and degradation behavior of prepared nanocomposites was investigated by TGA. MWCNTs had a noticeable boosting effect on the thermal stability of nanocomposites. TGA thermograms showed a two-step weight loss pattern for the degradation of MWCNT-PMMA/PMMA nanocomposites which is contrast with neat PMMA. Introduction of MWCNTs also improved the dynamic mechanical behavior and electrical conductivity of nanocomposites. TEM micrograph of nanocomposite revealed that the applied methods for functionalization of nanotubes and in situ synthesis of nanocomposites were comparatively successful in dispersing the MWCNTs in PMMA matrix.  相似文献   

13.
采用原位聚合法制备纳米SiO2/含氟丙烯酸酯共聚物复合乳液,研究了其聚合反应动力学,并通过红外光谱(IR)、透射电子显微镜(TEM)、热失重(TGA)等方法表征所得产物的结构及形态、乳胶膜的耐热性能和表面性能.研究结果显示,聚合反应的表观活化能为83.15 kJ/mol,纳米SiO2/含氟丙烯酸酯共聚物复合粒子呈现出明显的核壳结构,纳米SiO2粒子的引入不仅改善了聚合物的耐热性能,也在一定程度上提高了乳胶膜的抗水性.对膜表面自由能的组成分析表明,与一般含氟乳胶膜的表面自由能的情况相反,该乳胶膜的表面能是由较大的极性部分和较小的色散部分组成.  相似文献   

14.
Reversible addition-fragmentation chain transfer (RAFT) polymerization of 2,3-dimethyl-1,3-butadiene (DMB) in solution and on the surface of silica nanoparticles was investigated and PDMB-grafted silica nanoparticles (PDMB-g-SiO2 NPs) with different chain densities and molecular weights were prepared. The kinetic studies of DMB polymerization mediated by silica anchored RAFT agents at different graft densities were investigated and compared to the polymerization mediated by the corresponding free RAFT agent. The PDMB-g-SiO2 NPs were cured to prepare rubbery films and obtain matrix-free nanocomposites, which exhibited a good dispersion of silica nanoparticles and improved mechanical properties compared to the unfilled crosslinked rubber. © 2020 Wiley Periodicals, Inc. J. Polym. Sci. 2020 , 58, 417–427  相似文献   

15.
鞋用水性聚氨酯胶黏剂的制备及表征   总被引:1,自引:0,他引:1  
通过预聚体分散法,以二羟甲基丙酸(DMPA)、蔗糖(sucrose)为亲水扩链剂和交联剂制备了一种鞋用水性聚氨酯胶黏剂.通过FTIR、DSC、力学性能、固化速度等研究了蔗糖用量对聚氨酯结构与性能的影响.结果表明蔗糖己引入聚氨酯主链.随着蔗糖用量的增加,相同处理温度下聚氨酯胶液的固化速度提高,胶膜的吸水率降低,拉伸强度增大,断裂伸长率减小,粘接试样的T-剥离强度逐渐增大.当蔗糖用量超过5.52 wt%时,合成及乳化过程中体系容易凝聚,且所制得的胶黏剂粘接强度有所下降.总之,通过改变蔗糖用量可以显著改变水性聚氨酯结构与性能.  相似文献   

16.
Microencapsulated ammonium polyphosphate (MAPP) is prepared using hydroxyl silicone oil by in situ polymerization and characterized by XPS. Microencapsulation gives MAPP better water resistance and flame retardance compared with APP in thermoplastic polyurethane (TPU). Thermal stability and fire resistance behavior have been analyzed and compared. The LOI value of the TPU/MAPP composite is higher than that of the TPU/APP composite. The UL 94 rating of the TPU/MAPP composite is V-0 at the 20 wt% additive level, whereas TPU/APP gives V-2 rating at the same loading level. The water resistant properties of the TPU composites are studied. Results of the cone calorimeter and microscale combustion calorimeter experiment show that MAPP is an effective flame retardant in TPU compared with APP.  相似文献   

17.
采用自乳化法制备出阴离子聚氨酯纳米水分散液,以其作为乳化剂使苯乙烯单体在其中进行聚合,制备出不同聚苯乙烯与聚氨酯质量比的阴离子型PS/PU纳米复合物水分散液;对苯乙烯单体的聚合过程进行了研究;采用光子相关谱仪和透射电镜对其微观结构、粒径及其分布进行了测试,结果表明,该方法能够制备出稳定的具有核壳结构的PS/PU纳米复合物水分散液,但当苯乙烯单体浓度增大到一定程度(PS/PU质量比为50∶100)时,粒子不稳定而发生聚集.  相似文献   

18.
Polycaprolactone (PCL) was grafted to TEMPO-oxidized nanocellulose (TONCs) through a classical ring-opening polymerization reaction mediated by the surface TONC hydroxyl and carboxyl groups. The PCL increased the thermal stability and hydrophobicity without compromising the crystallinity. When TONCs and PCL-grafted TONCs (PTONC) were compared with respect to their perfusion within a segmented polyurethane matrix (CLPU), PTONC dispersed far better as evidenced by increased storage modulus and Young’s modulus. The mechanical strength of the PTONC nanocomposites was nearly that of unmodified TONCs while at a low content (<3 wt%). Furthermore, PTONC in CLPU promoted micro-phase separation of the matrix leading to a smaller decrease in loss factor and elongation at break for the nanocomposites, highly superior to unmodified TONCs. Thus, PTONC as a reinforcement agent enhanced the mechanical properties and ductility of CLPU.  相似文献   

19.
This paper addresses the effects of operating variables on mechanical properties of polyurethane/clay nanocomposites including tensile strength, abrasion resistance, and hardness. The variables were prepolymer type, clay cation, clay content, and prepolymer–clay mixing time. The experiments were carried out based on the design of experiments using Taguchi methods. The nanocomposites were synthesized via in situ polymerization starting from two different types of prepolymers (polyether‐ and polyester‐types of polyol reacted with toluene diisocyanate), and methylene‐bis‐ortho‐chloroanilline (MOCA) as a chain extender/hardener. Montmorillonite with three types of cation (Na+, alkyl ammonium ion, and MOCA) were examined. Among the parameters studied, prepolymer type and clay cation have the most significant effects on mechanical properties. Polyester nanocomposites showed larger improvements in mechanical properties compared to polyether materials due to higher shear forces exerted by polymer matrix on clay aggregates during polymer–clay mixing. The original MMT with Na+ cation results in weak improvements in mechanical properties compared to organoclays. It is observed that the stress and elongation at break, and abrasion resistance of the nanocomposite samples can be optimized with 1.5% of clay loading. The morphology and chemical structure of the optimum sample were examined by X‐ray diffraction and FT‐IR spectroscopy, respectively. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
冯莉  刘炯天  宋所讲 《应用化学》2008,25(12):1385-0
不饱和聚酯树脂;高岭土;纳米复合材料;原位聚合;阻燃;成炭  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号