首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Isoprene units in natural rubber (NR) and its synthetic analogues were quantified by 1H-NMR spectroscopy using polyethylene glycol (PEG) as an internal standard. The effect of PEG and rubber concentrations, molar ratio of rubber/PEG, measuring temperature and scan number on the quantification was investigated to establish the respective working range. Analysis of commercial grades of NR revealed that the differences in 1,4 isoprene content is caused by the production process and feedstock, in which proteins and lipids were found to be the major impurity in NR. Gel fraction of NR has insignificant effect on the measurement of 1,4 isoprene content. Furthermore, the new method was found to produce good results for the quantification of 1,4 and 3,4 units of synthetic polyisoprenes.  相似文献   

2.
In this article, silicone rubber (SR)/clay nanocomposites were synthesized by a melt‐intercalation process using synthetic Fe‐montmorillonite (Fe‐MMT) and natural Na‐MMT which were modified by cetyltrimethyl ammonium bromide (CTAB). This study has been designed to determine if the presence of structural iron in the matrix can result in radical trapping and then enhance thermal stability, affect the crosslinking degree and elongation. The SR/clay nanocomposites were characterized by X‐ray diffraction (XRD) patterns and transmission electron microscopy (TEM). Exfoliated and intercalated nanocomposites were obtained. Thermo gravimetric analysis (TGA) and mechanical performance were applied to test the properties of the SR/clay nanocomposites. The presence of iron significantly increased the onset temperature of thermal degradation in SR/Fe‐MMT nanocomposites. The thermal stability, gel fraction and mechanical property of SR/Fe‐MMT were different from the SR/Na‐MMT nanocomposites. So the iron not only in thermal degradation but in the vulcanization process acted as an antioxidant and radicals trap. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

3.
A series of polymer/clay nanocomposites containing mechanistically two different polymers, poly(ethylene glycol) (PEG) and poly(epsilon caprolactone) (PCL), were prepared by simultaneous copper(I)-catalyzed alkyne-azide cycloaddition click reactions. Both clickable polymers, PEG-Alkyne and PCL-Alkyne, were simultaneously clicked on to azide-functional montmorillonite (MMT-N3) nanoclay to get corresponding PEG-PCL/MMT nanocomposites. The chemical structures of the resulting nanocomposites were verified by following azide and silicone-oxygen bands using FT-IR and characteristic bands of PEG and PCL segments using 1H-NMR spectroscopy. The combined XRD and TEM analysis confirmed that all PEG-PCL/MMT nanocomposites had partially exfoliated/intercalated morphologies. In addition, the increase of MMT-N3 loading not only improved the onset and maximum degradation temperatures of the nanocomposites but also their char yields. Furthermore, the incorporation of MMT-N3 in the polymer matrix did not significantly influence the crystallization behavior of both PEG and PCL segments.  相似文献   

4.
Nanocomposite materials composed of poly (ethylene terephthalate) (PET) and montmorillonite (MMT) clays were prepared by in situ polymerization. Samples consisted of PET blended with various quantities of either pristine (Na+‐MMT) or organically modified MMT (A10‐MMT). The morphology and thermal and mechanical properties were evaluated for each sample. TEM micrographs, acquired at a 20 nm resolution, provide direct evidence of exfoliation of the clay particles into the PET matrix and show the effect of the alkyl‐modifier on clay dispersibility. The dispersion of PET/A10‐MMT was greater than that observed for the PET/Na+‐MMT nanocomposites. The greatest degree of exfoliation occurred for PET/A10‐MMT 0.5 wt %. However, PET/Na+‐MMT exhibited higher crystallization temperatures and rates suggesting that Na+‐MMT is a more efficient nucleating agent. Both mechanically and thermally, PET/A10‐MMT nanocomposites exhibited superior properties over pure PET. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1022–1035, 2008  相似文献   

5.
Styrene butadiene rubber (SBR) composites with silica, halloysite nanotubes (HNTs) and montmorillonite (MMT) were prepared and the interfacial and mechanical properties were compared to understand the reinforcing behaviours of these fillers based on the results of SEM, DSC, DMA, etc. Due to the formation of interparticle domain, HNTs immobilized more rubber approaching their surface than silica and MMT. Interestingly, only tightly immobilized rubber chains made contribution to the enhancement of interfacial and mechanical strength of SBR composites. This was because the tightly immobilized rubber acted as a bridge in the filler-rubber interface and induced the formation of stretched rubber chains linked filler network when the composites were loaded in tension, while loosely immobilized rubber were easy to slip off from filler surface, causing the separation between filler and bulk rubber. Therefore, silica with more tightly immobilized rubber approaching its surface showed better reinforcing effect on rubber than HNTs and MMT.  相似文献   

6.
Structural characterization of vulcanized natural rubber was performed by high‐resolution latex‐state 13C NMR spectroscopy. The vulcanized natural rubber latex was prepared by vulcanization of high ammonia natural rubber latex with sulfur and sodium di‐n‐butyldithiocarbamate as vulcanizing agents. High resolution was attained for latex‐state 13C NMR spectroscopy even after vulcanization of the rubber latex, as is evident from no background in spectrum and narrow half width of signals, which were independent of vulcanization time. Small signals at 44 and 58 ppm in the carbon region were assigned by measurements of both distortionless enhancement by polarization transfer (DEPT) and attached proton test (APT) to secondary, tertiary, and quaternary carbons of crosslinking points. The assignment was proved by high‐resolution solution‐state NMR spectroscopy of vulcanized liquid cis‐1,4‐polyisoprene as a model, in which DEPT, APT, 2‐dimensional 1H‐13C correlation (HETCOR), and 2‐dimensional heteronuclear multiple bond correlation (HMBC) measurements were applied. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1003–1009, 2007  相似文献   

7.
A pristine clay (Na+‐montmorillonite (MMT) and three different organoclays (20A‐MMT, vinylbenzyl dimethyldodecyl ammonium (VDA)‐MMT, and siloxane diamine ammonium (SDA)‐MMT) that originated from the pristine clay were used to prepare polyester‐acrylate (PEA)/clay nanocomposites by in situ ultraviolet (UV)‐curing. Except for the commercial organoclay (20A‐MMT), VDA‐MMT, and SDA‐MMT were prepared in this study by ion exchange method. The effects of organic modifications of the pristine clay on the UV‐curing behavior and structure of the nanocomposite system were investigated. The organic modifications of the clay affected considerably the UV‐curing behavior and structure of the nanocomposite system. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
Method of quantitative analysis through latex‐state 13C NMR spectroscopy was established for in situ determination of epoxy group content of epoxidized natural rubber in latex stage. The epoxidized natural rubber latex was prepared by epoxidation of deproteinized natural rubber with freshly prepared peracetic acid in latex stage. The resulting epoxidized deproteinized natural rubber (EDPNR) latex was characterized through latex‐state 13C NMR spectroscopy. Chemical shift values of signals of latex‐state 13C NMR spectrum for EDPNR were similar to those of solution‐state 13C NMR spectrum for EDPNR. Resolution of latex‐state 13C NMR spectrum was gradually improved as temperature for the nuclear magnetic resonance (NMR) measurement increased to 70°C. Signal‐to‐noise ratio of latex‐state 13C NMR measurement was similar to that of solution‐state 13C NMR measurement at temperature above 50°C. The epoxy group content determined through latex‐state NMR spectroscopy was proved to be the same as that determined through solution‐state NMR spectroscopy. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

9.
Low temperature degradation and characterization of natural rubber   总被引:1,自引:0,他引:1  
Low temperature degradation of natural rubber was performed with potassium persulfate (K2S2O8, KPS) in the latex stage at 30 °C to accomplish a good processability of the rubber. Various grades of natural rubbers were used as a source rubber. Gel content, molecular weight and chemical structure of the rubbers were characterized by swelling method, size exclusion chromatography and 1H NMR spectroscopy, respectively. The well characterized natural rubber was subjected to oxidative degradation with KPS at 30 °C. Mooney viscosity decreased when the latex was degraded with 1.0 phr of KPS and it was dependent upon the amount of KPS. Molecular weight and gel content of the degraded natural rubber were about one-half as low as those of the source rubber. Chemical structure of the rubber was analyzed through Fourier transform infrared and 1H NMR spectroscopic methods. The degraded natural rubber was found to contain carbonyl and formyl groups as an evidence of the oxidative degradation. Tensile strength of a vulcanizate prepared from the degraded natural rubber was the same as that prepared from the source rubber, even though the gel content and the molecular weight of the degraded rubber were distinguished from those of the source rubber.  相似文献   

10.
Nanocomposites were prepared with different grades of nitrile rubber with acrylonitrile contents of 19, 34, and 50%, with styrene–butadiene rubber (23% styrene content), and with polybutadiene rubber with Na‐montmorillonite clay. The clay was modified with stearyl amine and was characterized by X‐ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, and transmission electron microscopy (TEM). The XRD studies showed an increase in the gallery gap upon the modification of the filler by stearyl amine. The intercalation of the amine chains into the clay gallery gap was confirmed by the presence of some extra peaks (2928, 2846, and 1553 cm?1) in the FTIR spectra. The clay–rubber nanocomposites were characterized by TEM and XRD. The mechanical properties were studied for all the compositions. An improvement in the mechanical properties with the degree of filler loading up to a certain level was observed. The changes in the mechanical properties, with changes in the nature and polarity of the rubbers, were explained with the help of XRD and TEM results. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1573–1585, 2004  相似文献   

11.
Rubber crumb derived from the grinding of used truck tread and tyres is used as a low cost filler in rubber compounds based on diene rubber. In order to expand its application to other fields, the surface modification of the rubber crumb could be an interesting and feasible solution. In fact, the surface modification of rubber crumb may be used as a tool to expand its use in applications to compounds with polar rubber matrices or where hydrophilic surface of the rubber crumb could be desirable, for example in water-based dispersion or as filler for asphalt. In the present work, ozone has been used as the active agent to cause surface oxidation and functionalisation of rubber crumb in a fluidized bed reaction. The rubber crumb reacts swiftly with ozone producing CO2 in the initial stages of reaction and then leading to the desired surface oxidized product. The rate constant of the reaction between ozone and rubber crumb has been determined by FT-IR spectroscopy, monitoring the consumption of ozone in the gas phase in the presence of the crumb. A rate constant value of 5.03 × 10−3 s−1  g−1 of rubber crumb was determined. The degree of the surface oxidation of the rubber crumb can be determined by FT-IR spectroscopy using as reference the intensity of the ketone band at about 1710 cm−1. Additionally the nominal ratio between the amount of ozone (in mg) reacted with rubber crumb (in g) can be used as a parameter for the degree of the surface oxidation. The surface oxidized rubber crumb shows surface acidity and hydrophilicity. Thermogravimetric analysis, differential thermal analysis and pyrolysis-GC clearly demonstrate that the ozonization of the rubber crumb is directed exclusively to the surface of the crumb and does not affect the bulk properties at all.  相似文献   

12.
In order to prevent the properties, especially transparency, color and health security, of PET/clay nanocomposites from being deteriorated due to the thermal degradation of clay organo‐modifer, we had directly modified sodium montmorillonite (Na+‐MMT) with PET's monomer, bis (hydroxyethyl) terephthalate (BHET) which had a degradation temperature higher than 400°C, and successfully prepared the hybrids via in situ polymerization. Nanodispersion of clay and the intercalated morphology were determined, and compared with PET/Na+‐MMT hybirds in which Na+‐MMT was directly added without any treatment. Improved mechanical properties and Tg were observed for the prepared PET/ BHET‐modified clay composites. More importantly, the film produced from the composites had the same transparency as that of pure PET even when 2 wt% of clay was added. Non‐isothermal and isothermal crystallization experiments showed a very good neculation capability of the nano‐dispersed clay, particularly at higher crystallization temperatures. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
Photocrosslinkable elastomers with pendent acrylate groups have been synthesized by ringopening reaction of epoxidized natural rubber with acrylic acid. The kinetics of the acrylation reaction has been studied by infrared spectroscopy and shown to obey a simple first-order law. The acrylated natural rubber undergoes a fast crosslinking-polymerization when it is exposed to UV radiation in the presence of an aryl ketone photoinitiator, with formation of a tridimensional polymer network within a few seconds. The cure kinetics has been studied in real time by monitoring the disappearance of the IR absorption of the grafted acrylate double bond. The rate of polymerization was found to increase linearly with the degree of acrylation of the rubber, reaching values up to 3 mol kg?1 s?1. The isoprene double bond, which is inactive in virgin natural rubber, also undergoes polymerization upon UV exposure when epoxy or acrylate groups are present. The UV-cured polymer becomes totally insoluble in the organic solvents and exhibits remarkable mechanical properties, such as hardness, flexibility, and impact resistance. The gel fraction and the hardness were both shown to increase with the degree of acrylation and with the cure extent. © 1993 John Wiley & Sons, Inc.  相似文献   

14.
Melt intercalation has been found to be a very successful approach for preparation of polymer-clay nanocomposites. An aspect of this area that has been little investigated is the amount of polymer required to fill the interlayer galleries of the clay. This paper reports experiments which determine the amount of poly(ethylene oxide) (PEO) required to saturate the spacing between montmorillonite (MMT) or organically-modified bentonite (B34) layers. Differential scanning calorimetry (DSC), X-ray diffraction (XRD) and thermogravimetric analysis (TGA) were used to determine the saturation ratios of PEO to silicates, which are then compared to theoretical calculations. The deduced saturation ratio of PEO to MMT is 28:72, and PEO to B34 15:85 by XRD and DSC, whilst ratios of PEO to MMT of 21:79 and PEO to B34 10:90 were obtained via TGA. The density of intercalated PEO in the silicate galleries is estimated to be 0.82 g/cm3, which suggests that PEO in the silicate galleries is far less efficiently packed than in the amorphous region of the bulk polymer.  相似文献   

15.
The sol–gel transition mechanism of a thermoreversible hydrogel composed of a copolymer comprising poly(N-isopropylacrylamide) and poly(ethylene glycol) (PNIPAAm–PEG) was studied by NMR. The 1H– and 13C–NMR spectra measured on a PNIPAAm–PEG solution in 99.9% D2O showed a remarkable line width broadening of the PNIPAAm block of more than that of the PEG block, during thermally induced hydrogel formation. This result suggested that the mobility of the PNIPAAm block is more restricted than that of the PEG block during gelation. A crosslinked polymer network formation was ascertained by a sudden reduction in the spin-lattice relaxation time (T1) of the residual HDO proton during gelation. The temperature dependency of the T1 values for the PNIPAAm and PEG blocks revealed that the microscopic condition of the PNIPAAm block in water was drastically changed during gelation, while that of the PEG block was unchanged. The experimental results from NMR supported the following gelation mechanism; that an aggregation of PNIPAAm blocks in the separate copolymers caused by hydrophobic interaction forms crosslinking points to give an infinite three-dimensional network structure. The hydrated PEG chains in the copolymers provide the network with a swelling property in water, and prevent the aggregation from causing a macroscopic phase separation.  相似文献   

16.
N‐isopropyl acrylamide (NIPAAm) hydrogels are known as thermosensitive crosslinked polymer networks. In this work, the network parameters of their composites, i.e., NIPAAm/sodium montmorillonite (NIPAAm/Na+MMT) hydrogels synthesized by free radical solution polymerization in the presence of two different types of accelerator (tetramethyl ethylenediamine (TEMED) and ethylenediamine tetraacetic acid (EDTA)) and initiator (potassium persulphate (K2S2O8) and cerium ammonium nitrate ((NH4)2Ce(NO3)6), Ce(IV)) using five different clay content (in the range of 1.0–5.0 wt % of total monomer concentration) at 25 °C were presented and discussed. FTIR spectra, XRD patterns, SEM photographs, and network parameters of the samples indicated that the presence of COOH groups on EDTA molecules was resulted in the formation of exfoliated structures and the activity of EDTA/KPS redox pair was higher than those of TEMED/KPS and EDTA/Ce (IV) pairs. The compression moduli (G) of the hydrogels initiated with EDTA/Ce(IV) redox pair showed smooth and continual changings with increase in Na+MMT content (for swelling equilibrium at 25 °C) on the contrary of EDTA/KPS and TEMED/KPS pairs. It might be related to low initiator efficiency of cerium ammonium nitrate than KPS molecules, having higher effective crosslinking density with increasing clay content. On the other hand, the G moduli of NIPAAm/Na+MMT hydrogels (above their phase transition temperature) initiated with TEMED/KPS redox pair were higher than the others because of the more hydrophobic nature of TEMED molecules. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1256–1264, 2010  相似文献   

17.
The photo‐oxidative degradation of polyethylene/montmorillonite (PE/MMT) nanocomposite and microcomposite has been investigated. It has been found that the rate of photo‐oxidative degradation of PE/MMT nanocomposite and PE/Mn+MMT (where Mn+ stands for multivalent transition metal cation) microcomposites is much faster than that of pure PE. For the PE/MMT nanocomposite, the acceleration of photo‐oxidative degradation is due to the influence of MMT and ammonium ion, in which the influence of ammonium is primary. The decomposition of ammonium ion may create acidic sites on layered silicates; meanwhile, the complex crystallographic structure and habit of clay minerals could also result in some active sites. The reversible photo‐redox reaction of transition metal cations has a catalytic effect in the degradation of the polymer matrix. All these catalytic active sites can accept single electrons from donor molecules of polymer matrix and induce the formation of free radical upon UV irradiation. The generation of free radical leads to the oxidization and break of molecular chain. Thus, the materials suffer degradation and their mechanical strength decreases. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3006–3012, 2004  相似文献   

18.
Three polystyrene (PS)/clay hybrid systems have been prepared via in situ polymerization of styrene in the presence of unmodified sodium montmorillonite (Na‐MMT) clay, MMT modified with zwitterionic cationic surfactant octadecyldimethyl betaine (C18DMB) and MMT modified with polymerizable cationic surfactant vinylbenzyldimethyldodecylammonium chloride (VDAC). X‐ray diffraction and TEM were used to probe mineral layer organization and to expose the morphology of these systems. The PS/Na‐MMT composite was found to exhibit a conventional composite structure consisting of unintercalated micro and nanoclay particles homogeneously dispersed in the PS matrix. The PS/C18DMB‐MMT system exhibited an intercalated layered silicate nanocomposite structure consisting of intercalated tactoids dispersed in the PS matrix. Finally, the PS/VDAC‐MMT system exhibited features of both intercalated and exfoliated nanocomposites. Systematic statistical analysis of aggregate orientation, characteristic width, length, aspect ratio, and number of layers using multiple TEM micrographs enabled the development of representative morphological models for each of the nanocomposite structures. Oxygen barrier properties of all three PS/clay hybrid systems were measured as a function of mineral composition and analyzed in terms of traditional Nielsen and Cussler approaches. A modification of the Nielsen model has been proposed, which considers the effect of layer aggregation (layer stacking) on gas barrier. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1733–1753, 2007  相似文献   

19.

Organic montmorillonite modified with quaternary ammonium (O‐MMT) was compounded with uncured and dynamically cured poly(vinyl chloride)/carboxylated nitrile butadiene rubber (PVC/XNBR) composites, using a Brabender Plasticorder at 130°C and 50 rpm rotor speed. The reinforcing efficiency of the O‐MMT was investigated in the uncured PVC/XNBR composite and the dynamically cured PVC/XNBR counterpart. Mixing and dynamic curing of the composites were monitored by typical torque‐time curves derived from a Brabender internal mixer. The torque‐time curves revealed that the dynamic curing process was successful and the incorporation of O‐MMT has no adverse effect on the processibility of the composites. It has been found that the introduction of crosslinks within the rubbery phase in the presence of the O‐MMT has further improved the tensile properties. DMA studies revealed that dynamically cured composite with O‐MMT showed higher storage modulus than the composite without O‐MMT. Furthermore, a one‐step tensile modulus vs. temperature curve and a related one peak tensile loss modulus vs. temperature curve were obtained, consequently, both are characteristics of a miscible polymers system. Further evidence on the composite miscibility was purchased by thermal scans from DSC, which showed a single glass transition temperature of PVC/XNBR composites. This claim was further supported by ATR‐IR spectra which revealed that hydrogen bonding is extensively involved in PVC/XNBR composites. This evidence unveiled the exact nature of the specific interactions responsible for miscibility and hence, enhanced mechanical properties. Furthermore, we proved in our studies the reinforcing role played by layered clay due to better dispersion, as well as improved interactions.  相似文献   

20.
Layered silicate/natural rubber composites were prepared by direct polymer melt intercalation. Na‐montmorillonite Kunipia‐F and its organic derivates (organo‐clays) prepared by ion exchange were used as clay fillers. Silica (SiO2) Ultrasil VN3, a filler commonly used in the rubber industry, was used in combination with clay fillers. The effect of clay or organo‐clay loading from 1 up to 10 phr without (0 phr) or with silica (15 phr) showed significant improvement of the tensile properties (stress at break, strain at break and modulus M100). Modification of montmorillonite by three alkylammonium cations with the same length of alkylammonium chain (18 carbons) and different structure resulted in altered reinforcing and plasticizing effects of the filler in composites with rubber matrix. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号