首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Novel cylindrical polymer brushes consisting of poly(diphenylacetylene) main chain and poly(poly(ethylene glycol) methyl ether monomethacrylate) (PPEGMA) side chains were synthesized by the diphenylacetylene macromonomer or side chain initiated atom transfer radical polymerization (ATRP) of poly(ethylene glycol) methyl ether monomethacrylate (PEGMA) from an bromo isobutyryl-bearing poly(diphenylacetylene) (poly(BrDPA)) method. The diphenylacetylene macromonomer, namely, DPA-PPEGMA, were prepared by the ATRP of PEGMA from bromo isobutyryl-bearing diphenylacetylene. DPA-PPEGMA was polymerized successfully with WCl6-Ph4Sn catalyst to give high molecular weight polymer brushes poly(DPA-PPEGMA). Meanwhile, polymer brushes (PDPA-g-PPEGMA) were obtained by ATRP of PEGMA from poly(BrDPA). The molecular weight of the side chains of PPEGMA could be controlled simply by modulating the ATRP time. The macromonomer and polymer brushes are soluble in nonpolar solvents such as toluene and chloroform. The polymers of poly(BrDPA) and poly(DPA-PPEGMA) absorb in the longer wavelength region, with two peaks at around 370 and 414 nm. The polymers are thermally stable and exhibit double crystallization and melting peaks during the cooling and heating scans.  相似文献   

2.
Two synthetic ways were experimented to prepare new architectures of block copolymers made of poly(ethylene glycol) (PEG) and poly(methylthiirane). The coupling of both blocks conveniently end-capped as well as anionic polymerization of methylthiirane initiated by PEG-thiols gave readily the copolymers. Their characterization by 1H NMR, SEC and IR confirmed the expected structures.  相似文献   

3.
Coumarin-functionalized poly(ethylene glycol) (PEG) monols and diols were isothermally crystallized at temperatures between 20 and 35 °C before and after exposure to approximately 110 J cm−2 of ultra-violet A (λ > 300 nm, UVA) irradiation. Irradiation dimerized the coumarin groups and chain-extended the coumarin-functionalized PEG oligomers. The higher molecular weights reduced the crystal growth rate by as much as 50% compared to the non-irradiated coumarin-functionalized PEG oligomers under ambient crystallization conditions. Hoffman’s kinetic nucleation theory was utilized to evaluate the types of nucleation that occurred for the coumarin-functionalized PEG diols (COU-PEG-COU). Crystallization regimes II and III were observed for the coumarin-modified PEG oligomers before and after exposure to UVA light.  相似文献   

4.
A rapid sensitive method has been developed for the detection and quantitation of poly(ethylene glycol) 300 (PEG 300) in long-chain free fatty acid mixtures that requires minimal sample preparation. The PEG 300 was separated from the free fatty acids by RP-HPLC using a water–tetrahydrofuran gradient. PEG and the free fatty acids were detected using evaporative light scattering detection. The minimum detectable level of PEG in a free fatty acid mixture was 0.0125%.  相似文献   

5.
The compatibility between poly(aspartic acid) and poly(ethylene glycol) for the formation of an interpolymer complex (IPC) was investigated by dynamic rheology and evaluation of zeta potential values. The homogeneity of the realized IPC was observed by near infrared chemical imagistic (NIR-CI) technique. The data were sustained and underlined by the assessment of the compatibility between the polymeric compounds.  相似文献   

6.
A novel cell-impermeable zinc sensor was synthesized by incorporating poly(ethylene glycol)(PEG) to N-(8-quinolyl)-p-aminobenzenesulfonamide (HQAS) group.The polymeric zinc sensor combines both valuable features of HQAS and PEG.The HQAS of the sensor has the similar functions to TSQ,and exhibits a good fluorescence response to Zn2+ but poor fluorescence responses to other metal ions.The PEG chain can prevent the sensor to permeate healthy cell membrane.The stained experiments with the yeast cells as model showed that the sensor cannot stain the healthy yeast cells,but only the damaged or died yeast cells. These results indicated the novel zinc probe was a typical cell-impermeable zinc sensor.  相似文献   

7.
A normal-phase HPLC system using an amino column has been developed to characterise oligomers of poly(ethylene glycol)s (PEGs) of average Mr 400 to 2000 with derivatisation by dinitrobenzoate. Normal-phase HPLC with gradient elution using ternary solvents of hexane, dichloromethane and methanol has produced a baseline resolution for oligomers of PEG 400, 600 and 1000, while PEG 1000 and 2000 were analysed by using binary solvents of acetonitrile and water. Mixtures of PEGs have been determined by these HPLC systems. PEG 400 in a textile finish has also been determined with satisfactory recovery. It has been found that the hydroxyl group of solvents in normal-phase HPLC plays an important role in resolution and retention of PEG oligomers. Derivatisation efficiency for PEGs by dinitrobenzoyl chloride and quantitative determination of derivatised PEGs by HPLC have been studied. A reversed-phase (RP) mode of HPLC was examined for determination of PEG 400 oligomers. The normal-phase system provided greater resolution for oligomers of PEGs.  相似文献   

8.
Amphiphilic block copolymers, methoxy poly(ethylene glycol)-b-poly(valerolactone) (mPEG-b-PVL), were synthesized via ring opening polymerization of δ-valerolactone in the presence of methoxy poly(ethylene glycol) (mPEG). The copolymers form micelle-like nanoparticles by their amphiphilic characteristics and their structures were examined by Nuclear Magnetic Resonance (NMR). The sizes of nanoparticles ranged from 60 to 120 nm as measured by dynamic light scattering detection, and were larger with higher molecular weight of the copolymers. The Critical Micelle Concentration (CMC) of these nanoparticles in water decreased with increasing molecular weight of hydrophobic segment. Stability analysis showed that the micellar solutions maintain their sizes at 37 °C for six weeks without aggregation or dissociation. The lyophilization method was better than the evaporation method when camptothecin (CPT) was incorporated to the micelles. The former method yielded higher CPT loading efficiency and lower aggregation. The loading efficiency of CPT could be more than 96% and a steady release rate of CPT was kept for twenty six days. Moreover, the mPEG-b-PVL polymeric micelles offered good protection of CPT lactone form at 37 °C for sixteen days. The copolymers showed no cytotoxicity towards L929 mouse muscular cells when incubated for one day. Taken together, the mPEG-b-PVL copolymer has potential to be used for the delivery of CPT or other similar drugs.  相似文献   

9.
The photodegradation behaviour of the collagen and poly(ethylene glycol) PEG blends has been studied by Fourier transform infrared spectroscopy (FTIR), UV-Vis spectroscopy and viscometry. Surface properties before and after UV irradiation were observed using optical microscope.Collagen and PEG were immiscible and the films obtained from the mixture were fragile with poor mechanical properties. The photochemical stability of the collagen and PEG blend was different from that of the single components. In general collagen/PEG blends are less stable under UV irradiation than pure collagen. The influence of PEG on the photochemical stability of collagen depends on its concentration in the blend. Microscope photographs showed that the surface characteristics of collagen and collagen/PEG blends in film form are not drastically altered after UV irradiation.  相似文献   

10.
A new series of segmented copolymers were synthesized from poly(ethylene terephthalate) (PET) oligomers and poly(ethylene glycol) (PEG) by a two‐step solution polymerization reaction. PET oligomers were obtained by glycolysis depolymerization. Structural features were defined by infrared and nuclear magnetic resonance (NMR) spectroscopy. The copolymer composition was calculated via 1H NMR spectroscopy. The content of soft PEG segments was higher than that of hard PET segments. A single glass‐transition temperature was detected for all the synthesized segmented copolymers. This observation was found to be independent of the initial PET‐to‐PEG molar ratio. The molar masses of the copolymers were determined by gel permeation chromatography (GPC). © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4448–4457, 2004  相似文献   

11.
A new type of nanocapsules with an oil core, coated by poly(ethylene glycol) (PEG) was designed. The loading efficiency and the biocompatibility of the polymeric nanocapsules were evaluated when it was used as a carrier for hydrophobic agent paclitaxel. The nanocapsules were synthesized through miniemulsion polymerization of butylcyanoacrylate (BCA) with PEG as initiator. The particle size and zeta potential of nanocapsules were influenced by the PEG content in the polymerization system. Fourier transform infrared (FTIR) spectra and 1H NMR demonstrated the chemical coupling between PEG and poly(butylcyanoacrylate) (PBCA). Thermal characteristics of the copolymer were investigated by differential scanning calorimetry (DSC). The encapsulation efficiency increased concurrently with the increase of the PEG content in the system. The hemolytic assay and the cytotoxicity measurement showed that the PEG coating could significantly reduce the hemolytic potential and cytotoxicity of the nanocapsules. The results showed that the PEG-PBCA nanocapsules could be an effective carrier for hydrophobic agents.  相似文献   

12.
In this work, new ways of plasticizing polylactide (PLA) with low molecular poly(ethylene glycol) (PEG) were developed to improve the ductility of PLA while maintaining the plasticizer content at maximum 20 wt.% PLA. To this end, a reactive blending of anhydride-grafted PLA (MAG-PLA) copolymer with PEG, with chains terminated with hydroxyl groups, was performed. During the melt-processing, a fraction of PEG was grafted into the anhydride-functionalized PLA chains. The role of the grafted fraction was to improve the compatibility between PLA and PEG. Reactive extrusion and melt-blending of neat and modified PLA with PEG did not induce any dramatic drop of PLA molecular weight. The in situ reactive grafting of PEG into the modified PLA in PLA/PEG blends showed a clear effect on the thermal properties of PLA. It was demonstrated by DSC that the mobility gained by PLA chains in the plasticized blends yielded crystallization. The grafting of a fraction of PEG into PLA did not affect this process. However, DSC results obtained after the second heating showed an interesting effect on the Tg when 20 wt.% PEG were melt blended with neat PLA or 10 wt.% MAG-PLA. In the latter case, the Tg displayed by the reactive blend was shifted to even lower temperatures at around 14 °C, while the Tg of neat PLA and PLA blended with 20 wt.% PEG was around 60 and 23 °C, respectively. Regarding viscoelastic and viscoplastic properties, the presence of MAG-PLA does not significantly influence the behavior of plasticized PLA. Indeed, with or without MAG-PLA, elastic modulus and yield stress decrease, while ultimate strain increases with the addition of PEG into PLA.  相似文献   

13.
Novel Y-shaped block copolymers of poly(ethylene glycol) and poly(N-isopropylacrylamide),PEG-b-(PNIPAM)_2,were successfully synthesized through atom transfer radical polymerization(ATRP).A difunctional macroinitiator was prepared by esterification of 2,2-dichloroacetyl chloride with poly(ethylene glycol) monomethyl ether(PEG).The copolymers were obtained via the ATRP of N-isopropylacrylamide(NIPAM) at 30℃with CuCl/Me_6TREN as a catalyst system and DMF/H_2O(v/v = 3:1) mixture as solvent.The resulting copo...  相似文献   

14.
A new type of biodegradable polymer material, poly(caprolactone)–poly(ethylene glycol) block copolymer (PCL-b-PEG), was synthesized by means of direct copolycondensation of ε-caprolactone with poly(ethylene glycol) in the presence of a Ti(OBu)4 catalyst. The degradability of the polycaprolactone was improved by introducing a PEG component into it. The degradation of PCL-b-PEG copolymer increase with a decreasing crystallinity of the copolymer, and can be controlled by adjusting the component ratio of the copolymer.  相似文献   

15.
Organoclays with various contents of hydroxyl groups and absorbed ammonium were prepared and compounded with poly(ethylene terephthalate) (PET), forming PET/clay nanocomposites via melt extrusion. Dilute solution viscosity techniques were used to evaluate the level of molecular weight of PET/clay nanocomposites. Actually, a significant reduction in PET molecular weight was observed. The level of degradation depended on both the clay structure and surfactant chemistry in organoclays. The composites, based on clay with larger amount of hydroxyl groups on the edge of clay platelets, experienced much more degradation, because the hydroxyl groups acted as Brønsted acidic sites to accelerate polymer degradation. Furthermore, organoclays with different amounts of absorbed ammonium led to different extents of polymer degradation, depending upon the acidic sites produced by the Hofmann elimination reaction of ammonium. In addition, the composite with better clay dispersion state, which was considered as an increasing amount of clay surface and ammonium exposed to the PET matrix, experienced polymer degradation more seriously. To compensate for polymer degradation during melt extrusion, pyromellitic dianhydride (PMDA) was used as chain extender to increase the intrinsic viscosity of polymer matrix; more importantly, the addition of PMDA had little influence on the clay exfoliation state in PET/clay nanocomposites.  相似文献   

16.
In this work the intrinsic viscosity of poly(ethylene glycol)/poly(vinyl pyrrolidone) blends in aqueous solutions were measured at 283.1–313.1 K. The expansion factor of polymer chain was calculated by use of the intrinsic viscosities data. The thermodynamic parameters of polymer solution (the entropy of dilution parameter, the heat of dilution parameter, theta temperature, polymer–solvent interaction parameter and second osmotic virial coefficient) were evaluated by temperature dependence of polymer chain expansion factor. The obtained thermodynamic parameters indicate that quality of water was decreased for solutions of poly(ethylene oxide), poly(vinyl pyrrolidone) and poly(ethylene oxide)/poly(vinyl pyrrolidone) blends by increasing temperature. Compatibility of poly(ethylene oxide)/poly(vinyl pyrrolidone) blends were explained in terms of difference between experimental and ideal intrinsic viscosity and solvent–polymer interaction parameter. The results indicate that the poly(ethylene glycol)/poly(vinyl pyrrolidone) blends were incompatible.  相似文献   

17.
Block copolymerization by using isocyanates is an effective method for incorporating PHB and PEG because it can prepare copolymers with good properties, such as toughness, strength, and so on. In this study, we adopted soil suspension system to estimate the biodegradability of a series of PHB/PEG multiblock copolymers with different compositions and block lengths. In the degradation process, the changes in weight loss, molecular weight, and tensile strength were periodically measured to determine the biodegradability, and the surface morphology was also observed by SEM. In contrast to pure PHB, the weight loss of the copolymer was relatively lower. On the other hand, the tensile strength and molecular weight experienced apparent decrease, and for BHG1000-3-1, they reached 46.7% and 77.7% of the initial value, respectively. SEM observation showed that the surface was covered with numerous erosion pits. All these indicate that the degradation indeed took place and long-chain molecules have been hydrolyzed into shorter ones. The crystallization behavior was also investigated by DSC and WAXD. The results showed that both the segments, PEG and PHB, can form crystalline phases at lower PHB contents ranging from 29% to 44%, and when PHB component was more than 60%, only PHB phase can crystallize.  相似文献   

18.
Poly(aryl amide ether) (PAAE) thin films with nanometer-sized pores have been prepared in two steps: (1) solution casting of partially miscible poly(ethylene glycol) (PEG)/PAAE blends from one of their common solvents, dimethyl sulfoxide (DMSO), results in formation of PEG/PAAE nanocomposite films; (2) selective removal of PEG component by water washing yields nanosized, porous PAAE films. The pores have been found to have a small size variation and cover the whole surface homogeneously. With an increase in PEG contents, the sizes of the pores increase but the size distributions do not have much changes. This has been ascribed to formation of small PEG domains in PEG/PAAE composite films, which is facilitated by the strong interactions, mostly hydrogen bonds, between PEG and PAAE macromolecular chains.  相似文献   

19.
边新超  陈学思 《高分子科学》2016,34(9):1070-1078
Poly(ether urethane)s(PEU), including PEUI15 and PEUH15, were prepared through chain-extension reaction of poly(ethylene glycol)(PEG-1500) using diisocyanate as a chain extender, including isophorone diisocyanate(IPDI) and hexamethylene diisocyanate(HDI). These PEUs were used to toughen polylactide(PLA) by physical and reactive blending.Thermal, morphological, mechanical and aging properties of the blends were investigated in detail. These PEUs were partially compatible with PLA. The elongation at break of the reactive blends in the presence of triphenyl phosphate(TPP)for PLA with PEUH15 or PEUI15 was much higher than that of the physical blends. The aging test was carried out at-20 °C for 50 h in order to accelerate the crystallization of PEUs. The PEUs in the PLA/PEU blends produced crystallization and formed new phase separation with PLA, resulting in the declined toughness of blends. Fortunately, under the aging condition,although PEUH15 in blends could also form crystallization, the reactive blend of PLA/PEUH15/TPP(80/20/2) had higher toughness than the other blends. The elongation at break of PLA/PEUH15/TPP(80/20/2) dropped to 287% for the aging blend from 350% for the original blend. The tensile strength and modulus of PLA/PEUH15/TPP blend did not change obviously because of the crystallization of PEUH15.  相似文献   

20.
Long chain aliphatic alcohols have been used as model compounds to develop a preparative method for a water-soluble material, which could be a carrier for triacontanol, a highly hydrophobic plant growth regulator. New polyesters from long chain aliphatic (C = 12, 18 and 22) mono-1-alkyl citrates and poly(ethylene glycol) were synthesized and characterized by NMR spectroscopy. The polyester containing the triacontyl moiety was obtained from mono-1-triacontyl citrate, which was synthesized from the corresponding alcohol extracted from the Agave fourcroydes. The molecular weight of the polyesters depends on experimental conditions during synthesis such as reaction time, atmosphere, catalyst concentration and temperature. The reaction is second order in the early stage of the polyester synthesis. The reaction rate constant is independent of the length of the aliphatic chain, but it decreases with increasing of the poly(ethylene glycol) employed. Turbidity measurements have been used to study the polyester solubility. Solubility characteristics were found to depend on the of poly(ethylene glycol), the aliphatic-chain length and the value of for the polyester. These preparations could potentially be used to release triacontanol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号