首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Two benzene centered tri- and tetracyclopentadienyl ligands C6H3(CH2C5H5)3-1,3,5 (1) and C6H2(CH2C5H5)4-1,2,4,5 (2) and their titanium complexes C6H3[CH2C5H4Ti(C5H5)Cl2]3-1,3,5 (3), C6H3[CH2C5H4Ti(C5H4CH3)Cl2]3-1,3,5 (4), as well as C6H2[CH2C5H4Ti(C5H5)Cl2]4-1,2,4,5 (5) were synthesized and characterized by mass and 1H NMR spectra. In the presence of methylaluminoxane (MAO), 3, 4 and 5 are efficient catalysts for ethylene polymerization in toluene. The influence of the polymerization conditions such as catalyst concentration, MAO/Ti molar ratio, polymerization time and temperature were investigated in detail. 3, 4 and 5 produce linear polyethylene (PE) with broad molecular weight distributions (MWD) and a little lower molecular weight.  相似文献   

2.
Sulfur and oxygen functionalized cyclopentandienyl half-sandwich cobalt dicarbonyl complexes [η5-C5H4(CH2)2SCH2CH3]Co(CO)2 (3) and [η5-C5H4(CH2)2OCH3]Co(CO)2 (7) were prepared. Oxidation of 3 or 7 with I2 led to formation of 18-electron complexes [η5-C5H4(CH2)2SCH2CH3]CoI2 (4) and [η5-C5H4(CH2)2OCH3]Co(CO)I2 (8). The reactions of diiodide complex (4) with dilithium 1,2-dicarba-closo-dodecaborane(12)-1,2-dichalcogenolates [(THF)3LiE2C2B10H10Li(THF)]2 [E=S (1a), Se (1b)] afforded 18-electron mononuclear complexes [η5-C5H4(CH2)2SCH2CH3]Co(E2C2B10H10) [E=S (5a), Se (5b)] in which sulfur atoms of side-chain were attached via an intramolecular coordination. Complex 7 reacted with 1a and 1b to give the binuclear complexes {[η5-C5H4(CH2)2OCH3]Co(E2C2B10H10)}2 [E=S (10a), Se (10b)]. The molecular structures of 5a and 10b were determined by X-ray crystallographic analysis. According to the X-ray structure analyses, 10b contains two o-carborane diselenolate bridges, and each CpCo fragment is attached to one terminal and two bridging selenolato ligands. The central Co2Se2 four-membered ring is planar, and the direct metal-metal interaction is absent.  相似文献   

3.
Palladium complexes composed of [Pd(Ln)2Cl2] (n = 1, 2, 3, 4, 6), [L5a]2[PdCl4] and [Pd(L5b)2], where L1 = 4,5-dihydro-2-phenyl-1H-imidazole (=2-phenyl-1H-imidazoline), L2 = 2-(o-fluorophenyl)-1H-imidazoline, L3 = 2-(o-methylphenyl)-1H-imidazoline, L4 = 2-(o-tert-butylphenyl)-1H-imidazoline, L5a = 2-(o-hydroxyphenyl)-1H-imidazolinium, L5b = 2-(1H-imidazolin-2-yl)phenolate, and L6 = 2-(o-methylphenyl)-1H-imidazole, were synthesized. Molecular structures of the isolated palladium complexes were characterized by single crystal X-ray diffraction analysis. The effect of ortho-substituents on the phenyl ring on trans-chlorine geometry was noted for complexes [Pd(L1)2Cl2] 1a and 1b, [Pd(L2)2Cl2] 2 and [Pd(L6)2Cl2] 6, whereas cis-chlorine geometry was observed for [Pd(L3)2Cl2] 3 and [Pd(L4)2Cl2] 4. PdCl2 reacts with 2-(o-hydroxyphenyl)-1H-imidazoline in DMF to give [L5a]+ and [L5b]- so that [L5a]2[PdCl4] 5a and [Pd(L5b)2] 5b were obtained. In complex 5b, as an N,O-bidentate ligand, two ligands L5b coordinated with the central Pd(II) ion in the trans-form. The coordination of PdCl2 with 2-(o-hydroxyphenyl)-1H-imidazolines in solution was investigated by NMR spectroscopy.  相似文献   

4.
New bis-hydrocarbyl complexes of methylene bridged ansa-metallocenes [H2C(C5Me2H2)2]ZrR2 {R = Me (1), CH2Ph (2), CH2SiMe3 (3), Ph (4)} have been prepared. They form catalytically active intermediates with borane or borate depending on solvent and Zr-R group. Specifically, [H2C(Me2C5H2)2]Zr(CH2Ph)2 (2) produced an ion pair upon treatment with B(C6F5)3 whereas [H2C(Me2C5H2)2]Zr(CH2SiMe3)2 (3) produced a zwitterionic species, identified by 1H, 13C, and 19F NMR spectroscopy. Copolymerization of ethylene and norbornene for the metallocene dichloride/MAO and bis-hydrocarbyl complex/borate systems was compared.  相似文献   

5.
The oxidative addition of CH3I to planar rhodium(I) complex [Rh(TFA)(PPh3)2] in acetonitrile (TFA is trifluoroacetylacetonate) leads to the formation of cationic, cis-[Rh(TFA)(PPh3)2(CH3)(CH3CN)][BPh4] (1), or neutral, cis-[Rh(TFA)(PPh3)2(CH3)(I)] (4), rhodium(III) methyl complexes depending on the reaction conditions. 1 reacts readily with NH3 and pyridine to form cationic complexes, cis-[Rh(TFA)(PPh3)2(CH3)(NH3)][BPh4] (2) and cis-[Rh(TFA)(PPh3)2(CH3)(Py)][BPh4] (3), respectively. Acetylacetonate methyl complex of rhodium(III), cis-[Rh(Acac)(PPh3)2(CH3)(I)] (5), was obtained by the action of NaI on cis-[Rh(Acac)(PPh3)2(CH3)(CH3CN)][BPh4] in acetone at −15 °C. Complexes 1-5 were characterized by elemental analysis, 31P{1H}, 1H and 19F NMR. For complexes 2, 3, 4 conductivity data in acetone solutions are reported. The crystal structures of 2 and 3 were determined. NMR parameters of 1-5 and related complexes are discussed from the viewpoint of their isomerism.  相似文献   

6.
Three dinuclear iron complexes containing pendant nitrogen bases in phosphine ligands with general formular (μ-pdt) [Fe2(CO)5L] (where pdt is SCH2CH2CH2S, L = PPh2NH(CH2)2N(CH3)2 (5), PPh2NH(2-NH2C6H4) (6), PPh2[2-N(CH3)2CH2C6H4] (7)), were prepared as the models of the [Fe-Fe] hydrogenase active site. The molecular structures of 5-7 were characterized by X-ray crystallography. The secondary amine in 6 has weak intramolecular hydrogen bonding with both the terminal nitrogen and sulfur atom, which may suggest a proton transfer pathway from amine in phosphine ligand to the sulfur atom of active site. Protonation of complexes 5 and 6 only occurred at the terminal nitrogen atom. Electrochemical properties of the complexes were studied in the presence of triflic acid by cyclic voltammetry.  相似文献   

7.
Novel half-sandwich [C9H5(SiMe3)2]ZrCl3 (3) and sandwich [C9H5(SiMe3)2](C5Me4R)ZrCl2 (R = CH3 (1), CH2CH2NMe2 (2)) complexes were prepared and characterized. The reduction of 2 by Mg in THF lead to (η5-C9H5(SiMe3)2)[η52(C,N)-C5Me4CH2CH2N(Me)CH2]ZrH (7). The structure of 7 was proved by NMR spectroscopy data. Hydrolysis of 2 resulted in the binuclear complex ([C5Me4CH2CH2NMe2]ZrCl2)2O (6). The crystal structures of 1 and 6 were established by X-ray diffraction analysis.  相似文献   

8.
Three hydroxamic acid ligands (HL1 = acetohydroxamic acid; HL2 = benzohydroxamic acid; HL3 = N-phenylbenzohydroxamic acid), have been used to synthesize series of mono- or dialkyltin(IV) complexes, which include (i) the carboxyl acid hybrid five-coordinated dialkyltin complexes (C4H9)2SnL1L4 (1), [(CH3)2SnL2L5]·0.5C6H6 (2), (HL4 = acetic acid; HL5 = benzoic acid); (ii) the six-coordinated mono-n-butyltin complexes (C4H9)SnL1·Cl2·H2O (3), (C4H9)SnL2·Cl2·H2O (4), [(C4H9)SnL3·Cl2·H2O]·H2O (5), [(C4H9Sn)2(L3)2·Cl2·(OCH3)2] (6); and (iii) the alkali metal-mingled seven-coordinated mono-n-butyltin complexes [(C4H9Sn)3L2Na]+·Cl·(CH3CH2)2O (7), [(C4H9Sn)3L2K]+·Cl·CH2Cl2 (8). All complexes were characterized by elemental analyses, IR, 1H, 13C, 119Sn NMR and X-ray single crystal diffraction. In these complexes, hydroxamic acids present bidentate coordination modes with the carbonyl O atom and the hydroxyl O atom binding to tin center. In complexes 1-6, each tin atom is coordinated by one hydroxamic acid ligand. However, in complexes 7 and 8, tin atom is surrounded by three hydroxamic acid ligands, and all hydroxyl O atoms of the ligands also bind to the alkali metal center (Na or K). This kind of organotin(IV) framework containing one alkali metal is found for the first time. Furthermore, the supramolecular structures of 1, 3, 4 and 6 have been found to consist of 1D linear molecular chains formed by intermolecular N-H···X or C-H···X (X = O, N or Cl) hydrogen bonds. For complex 2, an interesting macrocyclic tetramer has been built by the intermolecular N-H···O hydrogen bonds. Fascinatingly, two unique symmetric dimeric structures are recognized in complexes 7 and 8, which is individually bridged by intermolecular N-H···Cl and N-H···O hydrogen bonds. In addition, for 8, the dimeric cycles have been further connected into a 1D supramolecular chain.  相似文献   

9.
The alkenyl-substituted titanocene complex [Ti(η5-C5H5)(η5-C5H4{CMe2(CH2CH2CHCH2)})Cl2] (1) has been synthesized and characterized using traditional methods. The reaction of 1 with 9-BBN gave the boryl substituted complex [Ti(η5-C5H5)(η5-C5H4{CMe2(CH2CH2CH2CH2BC8H14)})Cl2] (2). The cytotoxic activity of 1 and 2 was tested against tumour cell lines human adenocarcinoma HeLa, human myelogenous leukemia K562, human malignant melanoma Fem-x, human breast carcinoma MDA-MB-361 and normal immunocompetent cells peripheral blood mononuclear cells PBMC and compared with those of the reference complexes [Ti(η5-C5H5)2Cl2] (R1), [Ti(η5-C5H4Me)2Cl2] (R2) and [Ti(η5-C5H5)(η5-C5H4SiMe3)Cl2] (R3). Complex 1 showed higher cytotoxic activities on HeLa, Fem-x and K562 (IC50 values from 96.6 ± 3.4 to 149.2 ± 2.9 μM) than the reference complexes R1, R2 and R3 which presented IC50 values from 173.3 ± 6.0 to >200 μM. On the other hand, boryl substituted complex 2, present slightly lower cytotoxic activities than 1 on HeLa, Fem-x and K562 (IC50 values from 155.6 ± 5.5 to 167.9 ± 4.2 μM). However, 2 was the most active of the studied complexes against MDA-MB-361 (IC50 value of 161.1 ± 0.1 μM). Structural studies based on DFT calculations of 1 and 2 have also been carried out in order to gain a possible insight into the relationship between metal complex structure and cytotoxicity.  相似文献   

10.
Reaction of 3-methoxycarbonyl-2-methyl- or 3-dimethoxyphosphoryl-2-methyl-substituted 4-oxo-4H-chromones 1 with N-methylhydrazine resulted in the formation of isomeric, highly substituted pyrazoles 4 (major products) and 5 (minor products). Intramolecular transesterification of 4 and 5 under basic conditions led, respectively, to tricyclic derivatives 7 and 8. The structures of pyrazoles 4a (dimethyl 2-methyl-4-oxo-4H-chromen-3-yl-phosphonate) and 4b (methyl 4-oxo-2-methyl-4H-chromene-3-carboxylate) were confirmed by X-ray crystallography. Pyrazoles 4a and 4b were used as ligands (L) in the formation of ML2Cl2 complexes with platinum(II) or palladium(II) metal ions (M). Potassium tetrachloroplatinate(II), used as the metal ion reagent, gave both trans-[Pt(4a)2Cl2] and cis-[Pt(4a)2Cl2], complexes with ligand 4a, and only cis-[Pt(4b)2Cl2] isomer with ligand 4b. Palladium complexes were obtained by the reaction of bis(benzonitrile)dichloropalladium(II) with the test ligands. trans-[Pd(4a)2Cl2] and trans-[Pd(4b)2Cl2] were the exclusive products of these reactions. The structures of all the complexes were confirmed by IR, 1H NMR and FAB MS spectral analysis, elemental analysis and Kurnakov tests.  相似文献   

11.
A series of diorganotin(IV) and triorganotin(IV) compounds of the type [R2Sn(pca)2ClSnR3]2 (RPhCH21, 2-ClC6H4CH22, 2-FC6H4CH23, 4-FC6H4CH24, 4-CNC6H4CH25, 4-ClC6H4CH26, 2,4-Cl2C6H3CH27; Hpca2-methylpyrazine-5-acid), [(nBu)3Sn(pca)]8, [(CH3)2Cl2Sn(pca)Sn(CH3)2(pca)]9, {[(nBu)2Sn(pca)]2O}210 and {[Ph2Sn(pca)]3O2[Ph2Sn(OCH3)]} 11 have been obtained by reactions of 2-methylpyrazine-5-acid with triorganotin(IV) chloride, diorganotin(IV) dichloride, and diorganotin(IV) oxide. All compounds were characterized by elemental, IR, and NMR spectra analyses. The crystal structure of compounds 1, 8-11 were determined by X-ray single crystal diffraction, which revealed that compound 1 was tetranuclear macrocyclic structures with seven-coordinate and five-coordinate tin atoms, compounds 8 and 9 were polymeric chain structures with five-coordinate and seven-coordinate tin atoms, compounds 10 and 11 were monomeric structures with six-coordinate and five-coordinate tin atoms.  相似文献   

12.
The new dinuclear half-sandwich complexes of titanium with xylene bridge, [Ti(η5-cyclopentadienyl)Cl2L]2[CH2-C6H4-CH2] (L = Cl (3), L = O-2,6-iPr2C6H3 (4), L = N(SiMe3)(2,6-Me2C6H3) (5)), have been synthesized. The complexes 4 and 5 have been prepared by the reaction of the complex 3 with the corresponding lithium salts of aryloxy and anilide. Structure of these complexes has been characterized by 1H and 13C NMR. The change of substituent from chloride, 3, to anilide, 5, at titanium resulted in chemical shift change of cyclopentadienyl protons from 6.92 and 6.79 to 6.13 and 5.95 ppm probably due to the positive electron density delivery from the anilide group. It was found that all three half-titanocenes were effective catalyst for the generation of SPS (syndiotactic polystyrene). Xylene bridged dinuclear catalyst (4) with aryloxy substituent exhibited very high activity (458 kg of SPS/(mol of [Ti])h), at 40 °C, whereas the analogous hexamethylene bridged dinuclear half-titanocene catalyst (7) showed a lower activity (80.7 kg of SPS/(mol of [Ti])h) under the same conditions. While the catalyst 3 was the most active catalyst among three complexes less than 40 °C the catalyst 5 exhibited the highest activity at 70 °C. Xylene linkage was suggested to be too stiff to permit any kind of intramolecular interaction between two active centers. Lack of steric disturbance due to the rigidity of the xylene bridge might give rise to the similar properties of dinuclear metallocene to the corresponding mononuclear metallocene to result in not only the facile coordination of monomer at the active center to lead high activity but also the easier β-H elimination comparing to the dinuclear catalysts with the flexible bridge to result in the formation of lower molecular weight polymer.  相似文献   

13.
A series of ansa-metallocene complexes with an allyl substituted silane bridge [(CH2CHCH2)CH3Si(C5H4)2]TiCl2 (1), [(CH2CHCH2)CH3Si(C9H6)2]MCl2 [M=Ti (2), Zr (3), Hf (4)] and [(CH2CHCH2)CH3Si(C13H8)2]ZrCl2 (6) have been synthesized and characterized. The molecular structure of 6 has been determined by X-ray crystallographic analysis. Complexes 1-4, 6 bearing allyl groups have been investigated as self-immobilized catalysts for ethylene polymerization in the presence of MMAO. The results showed that the self-immobilized catalysts 1-4, 6 kept high ethylene polymerization activities of ca. 106 g PE mol−1 M h−1 and high molecular weight (Mw≈105) of polyethylene.  相似文献   

14.
Two hetero-atom containing bridged dinuclear metallocene complexes, (CpMCl2)2(C5H4CH2CH2OCH2CH2C5H4) [M = Ti (1), Zr (2)], have been synthesized by treating the disodium salt of the corresponding ligand (C5H5CH2CH2)2O with two equivalents of CpTiCl3 and CpZrCl3 · DME, respectively, in THF at 0 °C and characterized by 1H- and 13C-NMR, MS and IR spectroscopy. Homogenous ethylene polymerization by those complexes has been conducted systematically in the presence of methylaluminoxane (MAO). The influences of reaction parameters, such as [MAO]/[Cat] molar ratio, catalyst concentration, ethylene pressure, temperature and time, have been studied in detail. The catalytic activities of the dinuclear complexes 1 and 2 were higher than those of (MeCpTiCl2)2(C5H4CH2C6H4CH2C5H4) (3), (CpZrCl2)2(C5H4CH2C6H4CH2C5H4) (4) and the mononuclear metallocenes Cp2TiCl2 and Cp2ZrCl2, respectively. Complex 2 showed high catalytic activity at high temperature (50-100 °C) and high pressure (6 bar). The molecular weight distributions of polyethylene produced by 1 and 2 (MWD = 2.49 and 5.90) were broader than those using the corresponding mononuclear metallocenes (MWD = 2.05 and 2.15). The melting points of the polyethylene produced ranged from 129 to 133 °C, indicating a high linearity and a high crystallinity.  相似文献   

15.
Interaction of copper(II) salts with 2,2′-dipyridylamine (1), N-cyclohexylmethyl-2,2′-dipyridylamine (2), di-2-pyridylaminomethylbenzene (3), 1,2-bis(di-2-pyridylaminomethyl)-benzene (4), 1,3-bis(di-2-pyridylaminomethyl)benzene (5), 1,4-bis(di-2-pyridylaminomethyl)benzene (6), 1,3,5-tris(di-2-pyridylaminomethyl)benzene (7) and 1,2,4,5-tetrakis(di-2-pyridylaminomethyl)benzene (8) has yielded the following complexes: [Cu(2)(μ-Cl)Cl]2, [Cu(3)(μ-Cl)Cl]2 · H2O, [Cu2(4)(NO3)4], [Cu2(5)(NO3)4] · 2CH3OH, [Cu2(6)(CH3OH)2(NO3)4], [Cu4(8)](NO3)4] · 4H2O while complexation of palladium(II) with 1, 4, 5 and 6 gave [Pd(1)2](PF6)2 · 2CH3OH, [Pd2(4)Cl4], [Pd2(4)(OAc)4], [Pd2(5)Cl4], [Pd2(6)Cl4] and [Pd2(6)(OAc)4] · CH2Cl2, respectively. X-ray structures of [Cu(2)(μ-Cl)Cl]2, [Cu(3)(μ-Cl)Cl]2 · 2C2H5OH, [Cu2(6)(CH3OH)2(NO3)4], [Pd(1)2](PF6)2 · 2CH3OH, [Pd2(4)(OAc)4] · 4H2O and [Pd2(6)(OAc)4] · 2CH2Cl2 are reported. In part, the inherent flexibility of the respective ligands has resulted in the adoption of a diverse range of coordination geometries and lattice arrangements, with the structures of [Pd2(4)(OAc)4· 4H2O and [Pd2(6)(OAc)4] · 2CH2Cl2, incorporating the isomeric ligands 4 and 6, showing some common features. Liquid–liquid (H2O/CHCl3) extraction experiments involving copper(II) and 13, 5, 7and 8 show that the degree of extraction depends markedly on the number of dpa-subunits (and concomitant lipophilicity) of the ligand employed with the tetrakis-dpa derivative 8 acting as the most efficient extractant of the six ligand systems investigated.  相似文献   

16.
Low molecular weight tri-podal biphenyl- and benzoate-type mesogens [C6H5C6H4O(CH2)5SiMe2CH2CH2SiMe2]3CH (4), [C11H23O(C6H4)2O(CH2)5SiMe2]3CH (5) and [MeOC6H4OC(O)C6H4O(CH2)5SiMe2]3CH (6) (C6H4 = 1,4-phenylene) were obtained, from branched silyl substituted methane precursors [CH2CH(Me)2Si]3CH (1) and (HMe2Si)3CH (2). The biphenyl-containing ones (4) and (5) were converted into terminal alkenes, which were subsequently hydrosilylated with poly(methylsiloxanes). The polymer derived from (5) exhibited mesomorphic properties. Such systems have the potential to significantly increase the density of liquid crystal rod-like structures in side chains of linear polymers (or dendritic liquid crystal polymers).  相似文献   

17.
The low-temperature reaction of [CrCl3(thf)3] with LiC6H3Cl2-2,6 yields the organochromium(III) compound [Li(thf)4][CrIII(C6H3Cl2-2,6)4] (1) in 48% yield. The homoleptic, anionic species [CrIII(C6H3Cl2-2,6)4] is electrochemically related to the neutral one [CrIV(C6H3Cl2-2,6)4] (2) through a reversible one-electron exchange process (E1/2 = 0.16 V, ΔEp = 0.09 V, ipa/ipc = 1.18). Compound 2 was isolated in 74% yield by chemical oxidation of 1 with [N(C6H4Br-4)3][SbCl6]. Attempts to prepare the salt [NBu4][CrIII(C6Cl5)4] (4) by direct arylation of [CrCl3(thf)3] with LiC6Cl5 in the presence of [NBu4]Br gave the organochromium(II) salt [NBu4]2[CrII(C6Cl5)4] (3) instead, as the result of a reduction process. The salt [NBu4][CrIII(C6Cl5)4] (4) was cleanly prepared by comproportionation of 3 and [CrIV(C6Cl5)4]. The reaction of [MoCl4(dme)] with LiC6Cl5 in Et2O solution proceeded with oxidation of the metal center to give the paramagnetic (S = 1/2), five-coordinate salt [Li(thf)4][MoVO(C6Cl5)4] (5). The crystal and molecular structures of 1 and 2 have been established by X-ray diffraction methods. The magnetic properties of 1 and 4 (S = 3/2) as well as those of 2 (S = 1) have been established by EPR spectroscopy as well as by ac and dc magnetization measurements.  相似文献   

18.
Five new carborane dicyclohexylphosphine complexes, [Ag2(μ-I)2{1,2-(P Cy2)2-1,2-C2B10H10}2] (1), [Ag2(SCN)2{1,2-(PCy2)2-1,2-C2B10H10}2]n·CH2Cl2 (2), [Ag(ClO4){1,2-(PCy2)2-1,2-C2B10H10}]·CH2Cl2 (3), [Ag2(μ-NO3)2{1,2-(PCy2)2-1,2-C2B10H10}2]·CH2Cl2 (4) and [Ag(SC6H4COOH){1,2-(PCy2)2-1,2-C2B10H10}2]·CH2Cl2 (5), have been synthesized by the reactions of 1,2-bis(dicyclohexylphosphino)-1,2-dicarba-closo-dodecaborane with AgX (X = I, SCN, ClO4, NO3 and SC6H4COOH) in CH2Cl2. The structures of the five complexes were characterized by elemental analysis, FT-IR, 1H, 13C, 11B and 31P NMR spectroscopy. X-ray structure analysis revealed that the structures of the complexes can be classified into three types. Complexes 1 and 4 are di-μ-X-bridged structures and complexes 3 and 5 are mononuclear structures, while complex 2 is a chain-like polymer. Complexes 1 and 2 form 2D supramolecular networks and complexes 3, 4 and 5 form 1D chains via C-H?H-B dihydrogen bonding interactions.  相似文献   

19.
Eight diorganotin(IV) complexes of salicylaldehyde isonicotinylhydrazone (H2SalN) R2Sn(SalN) R = t-Bu 1, Ph 2, PhCH23, o-ClC6H4CH24, p-ClC6H4CH25,m-ClC6H4CH26,o-FPhCH27, p-FC6H4CH28 were prepared. All complexes 1-8 have been characterized by elemental, IR, 1H, 13C and 119Sn NMR analyses. The crystal structures of H2SalN and complex 1 were determined by X-ray crystallography diffraction analyses. Studies show that H2SalN is a tridentate planar ligand. For complex 1, the tin atom lies in this plane and forms a five- and six-membered chelate ring with the tridentate ligand. A comparison of the IR spectra of the ligand with those of the corresponding complexes, reveals that the disappearance of the bands assigned to carbonyl unambiguously confirms that the ligand coordinate with the tin in the enol form.  相似文献   

20.
Six novel organotin(IV) carboxylates have been successfully synthesized, namely, the polymer (C6H5)3Sn(L1) (1) [HL1 = 4-imidazolyl benzoic acid], the mononuclear (C6H5)3Sn(L2) (2) [HL2 = 4-pyrazolylbenzoic acid], (C6H5)3Sn(L3)·CH3OH (3) [HL3 = 4-triazolylbenzoic acid] and (C6H5)3Sn(L4) (4) [HL4 = 4-tetrazolyl benzoic acid] and the tetranuclear [(n-Bu2Sn)4(L2)2O2(OCH3)2] (5) and [(n-Bu2Sn)4(L3)2O2(OCH3)2] (6). X-ray diffraction analyses show 1D infinite chain of polymer 1, single molecular structures of isomorphous complexes 2 and 4, single molecule structures of complex 3 containing solvent CH3OH molecule and similar ladder-type structures of complexes 5 and 6. The photoluminescence of ligands and 1-6 were also measured in the solid state at room temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号