首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Water-dispersible nanoparticles of polyaniline (PANI) have been conveniently synthesized via the interfacial polymerization route using chemical oxidative polymerization of aniline (ANI) with ammonium peroxodisulfate in aqueous poly(styrenesulfonic acid) (PSS). Various molar feed ratios of ANI/PSS were employed to attain highly dispersible PANI nanoparticles. PSS was used as an anionic dopant and as a template for the formation of PANI nanoparticles. The dispersed PANI nanoparticles were characterized using a Zetasizer, transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS). Functional group analysis and the thermal stability of PANI particle dispersions were examined using FT-IR, UV-visible spectroscopy, and thermogravimetry analysis. The particle size of PANI-PSS nanoparticles was controlled by tuning the molar feed ratio of ANI/PSS. A uniform size distribution was obtained with the particle size of 5-15 nm for ANI/PSS ratios less than 1/1.  相似文献   

2.
Well-defined water-dispersible polyaniline (PANI) nanoparticles were synthesized by in situ chemical oxidative polymerization of aniline in the presence of an amphiphilic P(AMPS-co-VM) copolymer micelle. P(AMPS-co-VM) copolymer was prepared by the free radical polymerization of 7-(4-vinylbenzyloxyl)-4-methyl-coumarin (VM) and 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS) which can self-assemble into micelles in aqueous solution. Here, P(AMPS-co-VM) copolymer micelle is used not only as soft template but also as acid dopant in our reaction system. The structure, size, and morphology of PANI nanoparticles were characterized by various experimental techniques. It is found that the morphology and the size of the PANI nanoparticles strongly depend on the molecular characteristics of the P(AMPS-co-VM) copolymer. The synthesized PANI nanoparticles behaved as particulate emulsifier for the stabilization of oil-in-water emulsions.  相似文献   

3.
This article reports the preparation and self‐assembly of polyaniline (PANI) nanotubes, which were chemically synthesized by using in situ doping polymerization in the presence of ammonium persulfate (APS; (NH4)S2O8) as the oxidant without the use of an external template. The synthesized hierarchically nanotubes with a shape of a single nanotube with a length of 0.6 to 0.8 µm and an average with of 100 nm assembled from nanoparticles. The effects of the [salicylic acid]/[aniline] ratio on the size and capacitance of PANI nanotubes were studied. The specific capacitance behavior of the PANI nanotubes was also investigated by using cyclic voltammogram and galvanostatic charge–discharge tests. A maximum discharge‐specific capacitance of 422.5 F/g could be achieved, suggesting its potential application in electrode material for electrochemical capacitors. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
With sulfonated electrospun polystyrene fiber as a template, uniform polyaniline(PANI) nanotubes were fabricated via polymerization of aniline followed by template removal. Au nanoparticles(Aunano) were decorated on the PANI nanotube successfully via auto-reduction of HAuCl4 on the PANI nanotube. The morphology of the nanotubes was characterized by means of scanning electron microscopy(SEM) and transmittance electron microscopy(TEM). By varying precursor concentration and incubation time, Aunano-PANI with different size of Aunano was obtained conveniently. Glassy carbon electrode modified with the Aunano decorated PANI nanotubes (Aunano-PANI/GCE) was prepared and used seccessfully for the catalytic oxidation of ascorbic acid(AA). The results of differential pulse voltammetry indicate that there is a good linear relationship between the peak currents and the concentrations of AA in the range of 5-3000 μmol/L, with the limit of detection of 1 μmol/L(S/N>3). There is no mutual interference between AA and dopamine. The electrode has been successfully applied in the detection of AA in vitamin C tablet sample.  相似文献   

5.
Oxidative polymerization of aniline, anthranilic acid, and aniline‐co‐anthranilic acid by potassium dichromate Cr(VI) as an oxidant in acidic medium was investigated. In this study, the polymerization process of aniline, o‐anthranilic acid as well as aniline/o‐anthranlic acid using K2Cr2O7 produced, coordinated Cr(III)/polyaniline (PANI), Cr(III)/polyanthranilic acid (PAA) and Cr(III)/poly aniline‐co‐anthranilic acid (PANAA). The mechanism of polymerization reaction in the presence of dichromate was hypothesized. The precursor chromium doped polymers were characterized by TGA, FT‐IR, UV‐visible, XRD analyses. Cr2O3 nanoparticles size were determined using TEM analysis. The calcinations process of synthesized chromium doped PANI, PAA and PANAA yields Cr2O3 nanoparticles 26%, 31%, and 34% wt. respectively. Rhombohedral phase of Cr2O3 particles in the range from 33 to 61 nm was produced from chromium/polyanthranilic acid (PAA) and chromium/poly(aniline‐co‐anthranilic acid) PANAA. UV‐ visible analysis showed that optical band gaps (Eg) of doped poly aniline and its derivatives are in the range from1.55 to 1.80 using Tacu's law. The band gap values reveal that the doped chromium emeraldine base can be used as semiconductor materials. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
In this study, a novel nanocomposite based on polyaniline/polyvinyl alcohol/Ag (PANI/PVA/Ag) has been successfully synthesized. The chemical reduction method was used to produce Ag nanoparticle colloidal solution from Ag+ ions. The polymerization of aniline occurred in situ for the preparation of polyaniline (PANI) in the presence of ammonium persulfate. With exposure to Ag nanoparticles on the PANI/PVA composite, a new nanocomposite was obtained. The morphology and particle size of the novel nanocomposite was studied by scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier transform infrared (FT-IR) analyses. According to XRD analysis, the size of nanoparticles was found to be in the range of 10–17 nm. SEM images showed the favored shape of nanoparticles as triangle which is a benign shape for antibacterial analysis. The antibacterial activity of the obtained nanocomposite was also evaluated against Gram positive bacteria Staphylococcus aureus (Staph. aureus) and Gram negative Escherichia coli (E. coli) using the paper disk diffusion method. The antibacterial study showed that the PANI/PVA composite did not have a very good antibacterial activity but PANI/PVA/Ag nanocomposites were found to be effective against two bacteria.  相似文献   

7.
以苯胺和过硫酸胺为原料,采用原位聚合方法合成了聚苯胺/碳化钨(PANI/WC)导电复合材料。研究了反应体系中碳化钨的含量对复合材料电导率的影响,确定了较佳的聚合条件,并且通过FT-IR、XRD、XPS和DSC-TGA等手段对复合材料的结构和性能进行了表征和分析。结果表明:碳化钨(WC)的加入提高了聚苯胺的电子导电性能,复合材料中聚苯胺组分为无定型,WC的晶型在反应前后并未发生变化,复合材料的热稳定性好并且质子化程度更高。  相似文献   

8.
Superhydrophobic hollow polyaniline (PANI) bars assembled from nanorod-arrays were prepared in the presence of metal-monomeric template. Toward preparing these PANI bars, self-assembling and "template" methods were simultaneously applied. The self-removing metal-monomeric "template" was probably formed when a high concentration of aniline (0.5 M) was added into the cadmium acetate solution, and then decomposed gradually during the oxidative polymerization of aniline. In addition, a superhydrophobic flower-like PANI hierarchical structure was also prepared without the "template" (cadmium acetate aqueous solution containing a low concentration of aniline (0.05 M)). The formation mechanism of the hollow PANI bars was discussed.  相似文献   

9.
Composite material formed from a mesoporous aluminosilicate, Na-AlMCM-41, with conducting polyaniline (PANI) has been synthesized by an in situ polymerization technique. Studies of aniline adsorption over mesoporous Na-AlMCM-41 synthesized in our laboratory allowed us to find the modes in which aniline interacts with the active sites of Na-AlMCM-41. In order to obtain the best reaction conditions to polymerize aniline onto Na-AlMCM-41, aniline was first polymerized to produce pure PANI. Hence, the oxidative in situ polymerization was carried out by two procedures, differing in the polymerization time and in static or stirring conditions. Studies of infrared spectroscopy and UV-vis spectroscopy indicated that higher polymerization time and static conditions allowed us to obtain mainly polyaniline in emeraldine form on the host. The N(2) isotherm of the polyaniline/Na-AlMCM-41 composite (PANI/MCM) indicated that the shape was similar to that of MCM, but the shift to saturation transition to lower partial pressure shows that the channels are occupied by PANI and they are now narrowed. The thermal properties of PANI, Na-AlMCM-41, and composite were investigated by TGA analyses and we found that the polymer shows higher thermal stability when it is forming the composite. Scanning electron microscopy indicated that PANI is not on the outer surface of the host. Conductivity studies show that PANI/Na-AlMCM-41 exhibits semiconductor behavior at room temperature and its conductivity was 7.0 x 10(-5) S/cm, smaller than that of pure polyaniline. PANI/Na-AlMCM-41 conductivity shows an increase as temperature increases. Magnetic measurements at room temperature confirmed that the composite has paramagnetic behavior; at lower temperatures the composite became diamagnetic.  相似文献   

10.
在氧化铝模板中制备了HPA/PANI纳米线列阵,SEM、TEM表明列阵中纳米线直径约为80 nm;XRD与FT-IR证明形成了有效掺杂;单根纳米线的导电率为16.2 S.cm-1;材料的TG-DTA表明PANI纳米线材料有三步失重过程,失去吸附水过程,多酸失去结晶水和PANI结构持续分解过程,多酸结构分解过程;在氧化聚合过程中H4PMo11VO40即为质子酸又为氧化剂和掺杂剂;聚合反应采用自由基机理进行,掺杂反应发生在形成醌二亚胺式自由基正离子和双苯胺式自由基正离子和醌二亚胺式自由基正离子偶联聚合成链结构时.  相似文献   

11.
Graphene oxide (GO)–polyaniline (PANI) composite is synthesized by in situ polymerization of aniline in the presence of GO as oxidant, resulting in highly crystalline and conductive composite. Fourier transform infrared spectrum confirms aniline polymerization in the presence of GO without using conventional oxidants. Scanning electron microscopic images show the formation of PANI nanofibers attached to GO sheets. X‐ray diffraction (XRD) patterns indicate the presence of highly crystalline PANI. The sharp peaks in XRD pattern suggest GO sheets not only play an important role in the polymerization of aniline but also in inducing highly crystalline phase of PANI in the final composite. Electrical conductivity of doped GO–PANI composite is 582.73 S m?1, compared with 20.3 S m?1 for GO–PANI obtained by ammonium persulfate assisted polymerization. The higher conductivity appears to be the result of higher crystallinity and/or chemical grafting of PANI to GO, which creates common conjugated paths between GO and PANI. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1545–1554  相似文献   

12.
This work demonstrated a facile route to the synthesis of polyaniline (PANI) nanofibers by polymerization of aniline using chloroaurate acid (HAuCl(4)) as the oxidant. The reduction of AuCl(4)(-) is accompanied by oxidative polymerization of aniline, leading to uniform PANI nanofibers with a diameter of 35 +/- 5 nm and aggregated gold nanoparticles which can precipitate from the liquid phase during the reaction. The resultant PANI nanofibers and gold particles were characterized by means of different techniques, such as UV-vis, FTIR spectroscopy, and scanning and transmission electron microscopy methods. It is found that the gold aggregates are capped with polyaniline, and the conductivity of the fibers is around 0.16 S/cm.  相似文献   

13.
Polyaniline/magnetite nanocomposites consisting of polyaniline (PANI) nanorods surrounded by magnetite nanoparticles were prepared via an in situ self-assembly process in the presence of PANI nanorods. The synthesis is based on the well-known chemical oxidative polymerization of aniline in an acidic environment, with ammonium persulfate (APS) as the oxidant. An organic acid (dodecylbenzenesulfonic acid, DBSA) was used to replace the conventional strong acidic (1 M HCl) environment. Here, dodecylbenzenesulfonic acid is used not only as dopant, but also as surfactant in our reaction system. So, DBSA can excellently control the morphology and size of PANI nanorods and magnetite particles. Magnetite particles were formed simultaneously during sedimentation, and the formed nanorods were also decorated by the particles. The resulting PANI/magnetite composites were characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), and thermogravimetric analysis (TGA). It is found that PANI/magnetite nanorod composites have uniform size, superparamagnetism and a small mass fraction of magnetite, thermal stabilization even at a higher temperature.  相似文献   

14.
A postsynthetic self-assembly system was designed to investigate a construction process from suspended polyaniline (PANI) molecules to condensed aggregates. The conventionally synthesized PANI was dissolved in polar solvent and introduced into acidic medium with electrolytes similar to the aniline chemical oxidative polymerization (COP) medium. In this way, reaction interference that is usually encountered in the COP process could be avoided, and influences of medium conditions including organic electrolytes on the self-assembly behaviors of PANI were studied. It was discovered that, in a static aqueous medium with moderate pH and rich electrolytes, PANI molecules composed of bulk aggregates could self-assemble into well-dispersed nanoparticles with few structural changes. Electrostatic force is considered to dominate the self-assembly of PANI molecules as compared with other noncovalent interaction or the effect of soft templates such as ionic liquid and surfactant. The results are supposed to provide better understanding on the formation mechanism of micro/nanostructured PANI.  相似文献   

15.
Polyaniline (PANI)/silver composite was one-step synthesized under γ-ray irradiation. The structure of the composite was characterized by Fourier transform infrared spectroscopy, UV-Visible, and X-ray diffraction, which indicated that PANI and face-centered-cubic silver were synthesized under γ-ray irradiation. The reaction mechanism were discussed, which revealed that the PANI was formed by the reaction of aniline cation radicals formed by the reaction of aniline cation and ·OH, and Ag was formed by the reaction of Ag+ and e-aq. The morphology of the composite consisted of PANI nanofibers and Ag nanoparticles, and the mechanism of the morphology formation was discussed, which revealed that the rapid mixing like polymerization process might play an important role. It was revealed that the transport behavior of the composite well fitted with the variable-range-hopping model in 80-300 K and deviated from the model below 80 K.  相似文献   

16.
胡兴  邹国林  林敏  赵庆  李湘 《化学学报》2008,66(3):385-390
利用四磺基铁(II)酞菁(FeTSPc)在木质素磺酸钠模板体系中模拟过氧化物酶催化合成导电聚苯胺/木质素磺酸复合物(PANI/LGS)。讨论了溶液pH 值、苯胺浓度、LGS浓度、H2O2浓度及反应时间对FeTSPc催化聚合反应产物的影响。结果表明该反应具有明显的pH值依赖性,pH(1.0~4.0)是合成导电聚苯胺所必须需的,其最适pH值为1.5。用元素分析法、紫外-可见分光光度法、FTIR、循环伏安法、电导率测试、热重分析法等对PANI/LGS复合物表征, 结果表明该复合物具有较好的热稳定性和可逆的电化学活性。  相似文献   

17.
导电聚苯胺与磁性CoFe2O4纳米复合物的制备与表征   总被引:2,自引:0,他引:2  
在利用HNO3酸化处理CoFe2O4磁性纳米粒子使其表面离子化、分散性得到改善的基础上, 采用原位聚合法制备了具有电磁功能的聚苯胺/CoFe2O4 (PANI/CoFe2O4)纳米复合物. 借助TEM, XRD, FT-IR, TG, 四探针电导率仪、VSM(振动样品磁强计)等分析手段研究了复合物的形貌、结构、热稳定性及电磁性能. 结果表明, 处理过的CoFe2O4磁性纳米粒子可形成分散均匀的PANI/CoFe2O4纳米复合物, CoFe2O4以25 nm左右的粒子分散于聚苯胺基体中; PANI与CoFe2O4之间存在化学键合作用, 正是这种作用使复合物热稳定性得以提高; 复合物同时具有导电性和磁性能, 且随CoFe2O4含量变化而变化.  相似文献   

18.
Polyaniline colloids were prepared by enzymatic polymerization using chitosan and poly(N-isopropylacrylamide) as steric stabilizers. The resulting nanoparticles undergo flocculation by changing the pH or temperature of the aqueous dispersions. The environmentally responsive behavior of these colloids contrasts with that of polyaniline colloids synthesized using poly(vinyl alcohol) as the steric stabilizer. The colloid size was a function of the steric stabilizers and ranged from approximately 50 nm for polyaniline particles prepared in the presence of chitosan and partially hydrolyzed poly(vinyl alcohol) up to 350 nm for the particles synthesized using poly(N-isopropylacrylamide). UV-visible and Fourier transform infrared spectroscopic studies indicate that polyaniline colloids are spectroscopically similar to those obtained by traditional dispersion polymerization of aniline by chemical oxidation. These polyaniline colloids have potential applications in thermochromic windows and smart fluids.  相似文献   

19.
利用紫外光作为辅助条件,在反胶束体系中采用一步双原位法合成了硝酸(HNO3)、对甲基苯磺酸(TSA)和5-磺基水杨酸(SSA)掺杂的银/聚苯胺(Ag/PANI)纳米复合材料.通过对复合材料进行红外光谱(FTIR)、紫外光谱(UV-Vis)、扫描电镜(SEM)、X射线衍射(XRD)和导电性能的测试,研究了不同质子酸对Ag/PANI纳米复合材料结构、形貌和导电性能的影响.测试结果表明,3种酸掺杂制备的Ag/PANI纳米复合材料均为聚苯胺包覆银粒子的核-壳结构.不同的质子酸掺杂会对Ag/PANI纳米复合材料的电性能有重要影响.在3种酸掺杂的复合材料中,TSA掺杂的复合材料的电导率最佳,为215.14 S·cm-1.  相似文献   

20.
A micelle-based method to synthesize dispersed polyaniline (PANI)-Au composite particles by direct oxidation of aniline using AuCl4- as the oxidant is presented. The obtained composite particles have a core-shell structure, where Au nanoparticles of 20 nm mean diameter are encapsulated by PANI of well-defined tetrahedron shape with 150 nm average edge length. The polaron band of the dispersed PANI-Au composite particles is centered at 745 nm and is rather narrow compared to the broad 835 nm absorption of PANI synthesized by the IUPAC procedure. The surface plasmon absorption of Au nanoparticles normally centered at around 520 nm is absent in the composite particles with oxidized PANI. Our results point to a strong electronic interaction between the encapsulated Au nanoparticles and the shell of oxidized PANI. Films and pellets produced from these composite particles show a twofold higher conductivity than IUPAC PANI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号