首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A comb-like copolymer consisting of a poly(vinylidene fluoride-co-chlorotrifluoroethylene) backbone and poly(hydroxy ethyl acrylate) side chains, i.e. P(VDF-co-CTFE)-g-PHEA, was synthesized through atom transfer radical polymerization (ATRP) using CTFE units as a macroinitiator. Successful synthesis and a microphase-separated structure of the copolymer were confirmed by proton nuclear magnetic resonance (1H NMR), FT-IR spectroscopy, and transmission electron microscopy (TEM). This comb-like polymer was crosslinked with 4,5-imidazole dicarboxylic acid (IDA) via the esterification of the –OH groups of PHEA and the –COOH groups of IDA. Upon doping with phosphoric acid (H3PO4) to form imidazole–H3PO4 complexes, the proton conductivity of the membranes continuously increased with increasing H3PO4 content. A maximum proton conductivity of 0.015 S/cm was achieved at 120 °C under anhydrous conditions. In addition, these P(VDF-co-CTFE)-g-PHEA/IDA/H3PO4 membranes exhibited good mechanical properties (765 MPa of Young's modulus), and high thermal stability up to 250 °C, as determined by a universal testing machine (UTM) and thermal gravimetric analysis (TGA), respectively.  相似文献   

2.
The direct preparation of proton conducting poly(vinyl chloride) (PVC) graft copolymer electrolyte membranes using atom transfer radical polymerization (ATRP) is demonstrated. Here, direct initiation of the secondary chlorines of PVC facilitates grafting of a sulfonated monomer. A series of proton conducting graft copolymer electrolyte membranes, i.e. poly(vinyl chloride)‐g‐poly(styrene sulfonic acid) (PVC‐g‐PSSA) were prepared by ATRP using direct initiation of the secondary chlorines of PVC. The successful syntheses of graft copolymers were confirmed by 1H‐NMR and FT‐IR spectroscopy. The images of transmission electron microscopy (TEM) presented the well‐defined microphase‐separated structure of the graft copolymer electrolyte membranes. All the properties of ion exchange capacity (IEC), water uptake, and proton conductivity for the membranes continuously increased with increasing PSSA contents. The characterization of the membranes by thermal gravimetric analysis (TGA) also demonstrated their high thermal stability up to 200°C. The membranes were further crosslinked using UV irradiation after converting chlorine atoms to azide groups, as revealed by FT‐IR spectroscopy. After crosslinking, water uptake significantly decreased from 207% to 84% and the tensile strength increased from 45.2 to 71.5 MPa with a marginal change of proton conductivity from 0.093 to 0.083 S cm?1, which indicates that the crosslinked PVC‐g‐PSSA membranes are promising candidates for proton conducting materials for fuel cell applications. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
Poly(vinylidene fluoride) (PVDF) is known for its biocompatibility, piezo and pyro‐electricity, and membrane forming capability. In order to tune its properties, modification through grafting from approach by atom transfer radical polymerization (ATRP) is preferred. Hydrophilic polymers like poly(ethylene glycol) methacrylate, poly(methacrylic acid), poly(dimethylaminoethyl methacrylate) (PDMAEMA), and so forth have been anchored from PVDF backbone in order to make permeation of water molecules through the PVDF based membranes. The successful solution grafting of PDMAEMA chains from PVDF backbone by ATRP resulted appreciable graft conversion and hence its bulk properties showed a significant change. This water soluble graft copolymer shows incredible mechanical and adhesive properties. PVDF‐g‐poly(n‐butyl methacrylate) generates honey‐comb porous film using “breath figure” technique. Recently, they have used further improvement of grafting where model ATRP initiators are anchored using atom transfer radical coupling and used them as macroinitiators for grafting. This approach simplified the grafting reactions even more and enabled successful grafting of a large number of monomers under relatively less drastic conditions with appreciable conversion compared with the previous conditions. This technique has resulted interesting solution properties, ion and electron conducting PVDF, antifouling membrane, super glue and super tough materials, capable of generating metal nanoparticles tunable with pH and temperature. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 2569–2584  相似文献   

4.
The surface of PVDF film was selectively modified by wet chemistry. Treatment with aqueous LiOH produced HF-elimination and the emergence of an oxygen-containing functionality. The XPS analysis clearly indicated the presence of ketone-, ether(epoxide)-, and alcohol motifs. The percentage of alcohols could be significantly increased by reduction of the ketones with NaBH4 in 2-propanol, followed by reduction of the epoxides with DIBAL-H in hexane. Thus, the full treatment led to a PVDF surface displaying 7 to 16% of oxygen-containing units, of which about 60% consisted in alcohol motifs. The reactvity of the surface-displayed hydroxyl functions was assayed by radiolabeling with [3H]-Ac2O. © 1997 John Wiley & Sons, Inc. J. Polym Sci A: Polym Chem 35: 1227–1235, 1997  相似文献   

5.
Strategies for preparing graft copolymers from brominated poly(isobutylene-co-isoprene) (BIIR) are demonstrated. Selective dehydrohalogenation of the allylic bromide functionality within BIIR to give an exo-conjugated diene is described, along with subsequent cycloadditions of maleic anhydride (MAn) and its mono-ester and di-ester derivatives. Alcoholysis of the bicyclic anhydride product of BIIR dehydrobromination/MAn cycloaddition is used to produce an IIR-g-PE copolymer in low yield. An alternate approach involving bromide displacement from BIIR by the salts of maleate half-esters is shown to be an efficient means of generating isobutylene-rich copolymers containing polyethylene, polyethylene oxide and polycaprolactone grafts.  相似文献   

6.
Poly(vinylidene fluoride)(PVDF)‐graft‐random copolymers(PD) of diethyleneglycol methylether methacrylate(MeO2MA) and dimethylaminoethyl methacrylate(DMAEMA) are synthesized by a combined atom transfer radical coupling and atom transfer radical polymerization technique at three different co‐monomer compositions. The molar ratio of MeO2MA to DMAEMA in PD are measured to be 1:5.8, 1:1.3, and 1:0.5 for PD1, PD2, and PD3 graft copolymers. In PD2 the feed ratio and mole ratio are same indicating an azeotropic composition causing highest yield (89%) and highest molecular weight (9.29 × 105). The grafted chains of PD are temperature and pH responsive and in basic pH they show a sudden increase in size above certain temperature for LCST‐type phase transition, however, this is not observed at pH 4 and 7. PD can generate AgNPs under UV irradiation and morphology of PD at 30 °C varies with pH from vesicle to nanosphere. The AgNPs lie on the surface of the vesicles or assemble with the PD chains forming nanosphere morphology. At different pH, PD samples exhibit plasmon peaks at different wavelengths attributed to various size, shapes and cluster formation. The UV–vis spectra of AgNPs stabilized by PD1 and PD2 samples exhibits similar LCST‐type phase transition as observed above, but that of PD3 does not show any such transition. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 960–970  相似文献   

7.
A novel graft copolymer consisting of a poly(vinylidene fluoride‐co‐chlorotrifluoroethylene) backbone and poly(glycidyl methacrylate) side chains, that is, P(VDF‐co‐CTFE)‐g‐PGMA, was synthesized through atom transfer radical polymerization (ATRP) using CTFE units as a macroinitiator. Successful synthesis and microphase‐separated structure of the polymer were confirmed by 1H NMR, FTIR spectroscopy, and TEM. As‐synthesized P(VDF‐co‐CTFE)‐g‐PGMA copolymer was sulfonated by sodium bisulfite, followed by thermal crosslinking with sulfosuccinic acid (SA) via the esterification to produce grafted/crosslinked polymer electrolyte membranes. The IEC values continuously increased with increasing SA content but water uptake increased with SA content up to 10 wt %, above which it decreased again as a result of competitive effect between crosslinking and hydrophilicity of membranes. At 20 wt % of SA content, the proton conductivity reached 0.057 and 0.11 S/cm at 20 and 80 °C, respectively. The grafted/crosslinked P(VDF‐co‐CTFE)‐g‐PGMA/SA membranes exhibited good mechanical properties (>400 MPa of Young's modulus) and high thermal stability (up to 300 °C), as determined by a universal testing machine (UTM) and TGA, respectively. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1110–1117, 2010  相似文献   

8.
Surface-active microporous membranes were prepared from the poly(vinylidene fluoride)-graft-poly(2-(2-bromoisobutyryloxy)ethyl acrylate) copolymer (PVDF-g-PBIEA copolymer) by phase inversion in water. The PBIEA side chains could function as initiators for the atom transfer radical polymerization (ATRP) of 2-(N,N-dimethylamino)ethyl methacrylate on the membrane surfaces to give rise to the PVDF-g-PBIEA-ar-PDMAEMA membranes. N-alkylation with hexyl bromide and nitromethane gave rise to the quanternized PVDF-g-PBIEA-ar-QPDMAEMA membranes with polycation chains chemically tethered on the membrane surface, including the pore surfaces. The changes in the surface morphology and the surface chemical composition were confirmed by scanning electron microscopy and X-ray photoelectron spectroscopy. The scanning electron microscopy revealed that, in comparison to the pristine PVDF-g-PBIEA membranes, not only could the PVDF-g-PBIEA-ar-QPDMAEMA membranes remove the Gram-negative bacterium Escherichia coli but also inhibited the bacterial reproduction on the membranes to a significant extent.  相似文献   

9.
Poly(vinylidene fluoride‐co‐chlorotrifluoroethylene) (P(VDF‐co‐CTFE)) backbone was grafted with crosslinkable chains of poly(hydroxyl ethyl acrylate) (PHEA) and proton conducting chains of poly(styrene sulfonic acid) (PSSA) to produce amphiphilic P(VDF‐co‐CTFE)‐g‐P(HEA‐co‐SSA) graft copolymer via atom transfer radical polymerization (ATRP). Successful synthesis and microphase‐separated structure of the copolymer were confirmed by 1H NMR, FT‐IR spectroscopy, and TEM analysis. Furthermore, this graft copolymer was thermally crosslinked with sulfosuccinic acid (SA) to produce grafted/crosslinked membranes. Ion exchange capacity (IEC) increased continuously with increasing SA contents but the water uptake increased up to 6 wt% of SA concentration, above which it decreased monotonically. The membrane also exhibited a maximum proton conductivity of 0.062 S/cm at 6 wt% of SA concentration, resulting from competitive effect between the increase of ionic groups and the degree of crosslinking. XRD patterns also revealed that the crystalline structures of P(VDF‐co‐CTFE) disrupted upon graft polymerization and crosslinking. These membranes exhibited good thermal stability at least up to 250°C, as revealed by TGA. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
Polymer gel electrolytes have three constituents: polymer, salt and solvent. This paper gives structural information on polymer gel electrolytes made from poly(vinylidene fluoride), lithium triflate and tetraglyme. These electrolytes exhibit a room-temperature ionic conductivity in the region of 10−3 S cm−1 while maintaining sufficient mechanical rigidity to form self-supporting films (having elastic moduli in the region of 100 kPa). Differential scanning calorimetry and dynamic mechanical analysis have been used to show that the majority of the network junctions of the gel are crystalline in nature. Wide angle X-ray diffraction has revealed that when no salt is included in the gel, these crystal junctions are almost an order of magnitude larger in their lateral dimensions than when salt is present. The salt is thought to nucleate crystallisation. The modulus is significantly reduced by inclusion of salt; however, DSC suggests that apparent crystallinity is only slightly reduced by the presence of salt. This discrepancy is attributed to either the uncertainty in the heat of fusion of PVDF, or to the formation of small crystalline particles that are not incorporated in the network junctions. Gels with polymer concentrations between 15 and 40% (by weight) maintain their mechanical rigidity up to temperatures around 100 °C. However, once melted, the gel structure only reforms at much lower temperatures. The variation of ionic conductivity of salted gels with temperature shows no such hysteresis, and it is concluded that the ionic conductivity is independent of the mechanical state of the gel.  相似文献   

11.
A series of proton exchange membranes have been prepared by the preirradiation grafting method. Styrene was grafted onto a matrix of poly(vinylidene fluoride) (PVDF) after electron beam irradiation. Part of the samples was crosslinked with divinylbenzene (DVB) or bis(vinylphenyl)ethane (BVPE). Subsequent sulfonation gave membranes grafted with poly(styrene sulfonic acid) and marked PVDF‐g‐PSSA. It was found that the intrinsic crystallinity of the matrix decreased in both the grafting and the sulfonation reaction in all the membranes. The graft penetration and the ion conductivity are influenced strongly by the crosslinker. The ion conductivity is considerably lower in crosslinked membranes than in noncrosslinked ones. Generally, the mechanical strength decreases with crosslinking. The membranes show a regular phase separated structure in which the sulfonated grafts are incorporated in the amorphous parts of the matrix polymer. The phase separated domains are small, of the order of magnitude of 100–250 nm. These were resolved on transmission electron micrographs and on atomic force images but could not be resolved with microprobe Raman spectroscopy. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1741–1753, 1999  相似文献   

12.
Nano-load (n-IIT) and micro-load (μ-IIT) instrumented indentation tests (IITs) were used to characterize elastic modulus and hardness in a semicrystalline polymer. The tests were conducted with loading rates ranging from 4.9 to 317 mN.min−1 for n-IIT and from 300 to 10000 mN.min−1 for μ-IIT. A decrease in the elastic modulus was observed as the load rate increased for the n-IIT process, and the elastic modulus increased as the load rate increased for the μ-IIT process. This behavior was explained by two-flow volume control under the indenter and the corresponding shear stress, which can influence the state of stress. The effect of holding time on the elastic modulus and hardness was also investigated for μ-IIT. E decreased with increasing holding time up to 30 s and became constant from there on. Hardness, however, decreased for all holding times evaluated. The steady state creep was only reached after 90 s, which is significantly higher than the time for elastic modulus stabilization.  相似文献   

13.
The conducting properties of solid electrolytes comprising random poly(ethylene oxide-co-propylene oxide) (of 84 : 16 monomer units mole ratio) and lithium, sodium, potassium, cesium, and rubidium salts have been studied. The systems containing some lithium or sodium salts achieved conductivity levels as high as 10?5–10?4 S/cm at ambient temperature and greater than 10?3 S/cm at 100°C. However, the systems with rubidium and cesium salts exhibit conductivities a few orders of magnitude smaller. DSC studies show that the electrolytes studied are characterized by a high content of an amorphous phase (95–100%). It is suggested that the copolymer exhibits lower complexing abilities than that of poly(ethylene oxide), which results in a higher flexibility of electrolytes containing small cations and poor dissociation of the salts having large cations. © 1995 John Wiley & Sons, Inc.  相似文献   

14.
<正>The graft copolymerization of N,N-dimethylacrylamide onto alginate by free radical polymerization using potassium peroxymonosulphate-sarbose as a redox pair in an inert atmosphere was investigated.The reaction conditions for maximum grafting have been optimized by varying the reaction variables,including the concentration of N,N-dimethylacrylamide(7×10~(-2) mol/L to 23×10~(-2) mol/L),potassium peroxymonosulphate(2×10~(-3) mol/L to 18×10~(-3) mol/L),sarbose(0.4×10~(-3) mol/L to 3.4×10~(-3) mol/L),sulphuric acid(1×10~(-3) mol/L to 8×10~(-3) mol/L) and alginic acid(0.4 g/L to 1.8 g/L) along with time duration(60 min to 180 min) and temperature(25℃to 45℃).Water swelling capacity,metal ion sorption and flocculation studies of the synthesized graft copolymer have been performed.The graft copolymer has been characterized by FTIR spectroscopy and thermogravimetric analysis.  相似文献   

15.
Micropatterning of a semicrystalline poly(vinylidene fluoride) (PVDF) solution was performed by a temperature controlled capillary micromolding where the rate of solvent evaporation was controlled by substrate temperature. In order to choose proper solvents for micropatterning, we have investigated the solubility of PVDF in various organic solvents and crystal structures of the PVDF bulk films cast from the solvents. The films prepared from the polar solvents such as dimethylformamide (DMF), dimethyl sulfoxide (DMSO) dominantly showed γ type crystals regardless of preparation temperature, while the films from tetrahydrofuran (THF) exhibit α type crystals and the ones from acetone and methyl ethyl ketone (MEK) show the characteristics of both α- and γ-PVDF. The quality of micropatterns and shapes of the PVDF crystals in the patterns significantly depend on solvent evaporation rates. Micropatterns of PVDF formed in DMF at 120 °C showed the best uniformity in shape. Crystals of the PVDF nucleated at the center regions of microchannels tended to be elongated with the b-axis of γ-PVDF crystals along the channels as the concentration of the solution decreased. In contrast, crystals nucleated at the corner regions of the channels had their b-axis oriented perpendicular to the channels. In line patterns with the width of 2 μm, the corner nucleated crystals were dominant and a resulting bamboo-like crystalline microstructure was observed in which the b-axis of γ-PVDF crystals, fast growth direction, is oriented normal to the microchannels. The crystal structures of the bulk films and the micropatterns were characterized by X-ray diffractometer, Fourier transform infrared spectroscope in Attenuated Total Reflection mode, Polarized Optical and Scanning Electron Microscope.  相似文献   

16.
<正>Structure-property relationships for poly(vinylidene fluoride)-graft-polystyrene sulfonic acid(PVDF-g-PSSA) fuel cell membranes prepared by a single step method involving radiation-induced grafting of sodium styrene sulfonate(SSS) onto electron beam(EB) irradiated poly(vinylidene fluoride)(PVDF) films were established.The physico-chemical properties of the membranes such as ion exchange capacity,water swelling and proton conductivity were correlated with the degree of grafting(G,%) and the structural changes taking place in the membrane matrix during the preparation procedure. The variation in the crystallinity and the thermal stability of membranes was studied by differential scanning calorimetry (DSC) and thermogravimetric analysis(TGA),respectively.The membranes were found to undergo substantial structural changes in forms of ionic sites increase,hydrophilicity enhancement,hydrophobicity reduction and crystallinity decrease with the variation in G(%) and the preparation method.The structural and thermal properties of the obtained membranes were also compared with their counterparts prepared by a conventional two-steps method i.e.radiation induced grafting of styrene onto EB irradiated PVDF films followed by sulfonation.The PVDF-g-PSSA membranes obtained by a single-step method were found to have superior properties compared to those obtained by the conventional two-steps method.  相似文献   

17.
Copolymers of ethyl cellulose (EC) with polystyrene (PSt) were synthesized through atom transfer radical polymerization (ATRP). The molecular weight of graft copolymers increased without any trace of the EC macro-initiator, and the polydispersity of the side chains was low. The molecular weight of the side chains increased with the monomer conversion. Kinetic study indicated that the polymerization was first order. The micelle characteristics of the graft copolymer in acetone were investigated using dynamic light scattering (DLS), atom force microscopy (AFM) and transmission electron microscopy (TEM). With increasing the concentration, micelles were gradually formed from the solution. The TEM and AFM images indicated that the micelles had spherical shape and showed core-shell structure.  相似文献   

18.
采用商业聚(偏氟乙烯-co-三氟氯乙烯)(P(VDF-co-CTFE)为原料,结合氢化反应、ATRP和磺化反应系统合成了一系列聚(偏氟乙烯-co-三氟乙烯-co-三氟氯乙烯)-g-磺化聚苯乙烯(P(VDF-co-TrFE-co-CTFE)-g-SPS)共聚物.重点研究了测试环境(如温度和相对湿度)、聚合物微观结构(接枝密度,接枝长度等)对聚合物形貌、吸水率和质子传导率的影响.研究表明,在接枝量相同的情况下,随着接枝密度的降低,聚合物的相分离更加明显,亲水相从孤岛型逐渐转变为部分连续型;聚合物的吸水率随磺酸基摩尔含量增加而提高;聚合物的质子传导率随着温度的提高和湿度的降低而降低;在较低温度下,聚合物的电导率随接枝密度的增加而降低,而在较高温度下,聚合物的电导率随接枝密度的增加而升高.组成优化的P(VDF-co-TrFE-co-CTFE)-g-SPS共聚物在30~120℃和高湿度条件下,其质子传导率明显优于Nafion112膜.  相似文献   

19.
The synthesis of one original poly(vinylidene fluoride-co-hexafluoropropylene)-g-perfluoropolyether graft copolymer, achieved from the radical terpolymerization of vinylidene fluoride (VDF), hexafluoropropylene (HFP) and a perfluoropolyether (PFPE) bearing an ω-allylic group, is presented. This functional PFPE was synthesized from the condensation of an ω-carboxylic PFPE with an allyl amine. The terpolymerization was initiated by t-butyl peroxide in a perfluorohexane/acetonitrile mixture. NMR spectroscopy enabled the VDF, HFP and allyl amido PFPE base units contained in the terpolymer to be assessed, showing the good incorporation of VDF and the poor reactivity of HFP.  相似文献   

20.
The kinetics of radiation-induced carbonization of PVDF surfaces aiming at carbyne (one-dimensional carbon allotrope) synthesis have been studied. A sample of poly(vinylidene fluoride) film was exposed to Mg Kα radiation ( = 1253.6 eV) in an ESCALAB Mk II spectrometer for 14 h with the aim of surface carbonization. Some 221 spectra of C 1s electrons were measured and expanded using 7 Gaussian curves to reveal and identify species being created on the film surface during its carbonization. A decrease in the content of CF2 groups, the emergence of CF species in two different states, and growth of a number of fluorine-free carbon atoms have been detected. Simultaneous variations of CH/CH2, CF and CF2 peaks suggest elimination of H and F atoms as HF. A proposed model shows three probabilistic factors affecting the rate of degradation, one of which remains uncertain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号