首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
PLA nanocomposite films with multifunctional characteristics such as mechanical, anti-UV, antibacterial, electrical, gas barrier properties are potentially of high interest as packaging biomaterials. Occasionally, desired and beneficial effects obtained by addition nanofillers come along with some drawbacks, leading to the sharp drop in the molecular weights of the polyester chains, and consequently an important loss of mechanical and thermal properties. Novel PLA-ZnO nanocomposite films were produced by melt-compounding PLA with 0.5–3% ZnO rod-like nanoparticles. The surface treatment of nanofiller by silanization (with triethoxy caprylylsilane) was necessary to obtain a better dispersion and to limit the decrease of molecular mass of PLA. The morphology, molecular, thermo-mechanical and transport properties to water vapor of PLA-ZnO films were analyzed with respect to the neat PLA. According to DSC and to XRD, the produced films were essentially amorphous. The changes in PLA permeation properties were strongly dependent on temperature and nanofiller loading. The well dispersed ZnO nanoparticles within the polyester matrix were effective in increasing the tortuosity of the diffusive path of the penetrant molecules. The activation energy remained similar for PLA and PLA-1% ZnO, but was found greater at higher loading of ZnO (3%), confirming the increased difficulty of travelling molecules to diffuse through PLA. In comparison to the neat PLA (presenting no antimicrobial efficacy), the nanocomposites were active against both Gram-positive and Gram-negative bacteria, stronger antibacterial activity being evidenced after 7 days elapsed time. By considering the multifunctional properties of PLA-ZnO nanocomposites, the films produced by extrusion can be considered a promising alternative as environmental-friendly packaging materials.  相似文献   

2.
Starch/boron nitride (starch/BN) bionanocomposites were prepared with the reinforcement of boron nitride nano powder by solution technique. The dispersion of BN in the starch was achieved by a continuous sonication process. The interaction between starch and boron nitride nanopowder was investigated by Fourier transform infrared (FTIR) spectroscopy. The structural properties of starch/BN bionanocomposites was studied by X-ray diffraction (XRD). The high resolution transmission electron microscopy (HRTEM) was used for the study of dispersion of boron nitride in starch matrix and diffraction patterns were studied by selected area electron diffraction (SAED). Thermal stability of the starch was increased with rising concentrations of boron nitride due to incorporation of rigid nano BN with starch matrix. The substantial reduction in oxygen permeability was obtained by increasing the concentration of BN. The biodegradability of synthesized bionanocomposites was measured by using activated sludge water. Further, it was noticed that, starch/BN bionanocomposites are resistant towards inorganic acids and bases. The tensile strength of starch/BN bionanocomposites was increased whereas; the water resistance property of the materials was decreased with increasing BN loading.  相似文献   

3.
《印度化学会志》2022,99(11):100783
The study dealt with the development of biopolymer based hydrogel artificial fish bait with hydrolysates derived from fish processing wastes. Fish scale gelatin (FSG) was used for the development of a hydrogel to which bioattractants extracted from seafood processing wastes of fish, squid and shrimp were added to prepare composite gels such as FSG-FH, FSG-SH and FSG-SPH, respectively. To understand the homogenesity and cross linking complexation of composite gels, the study aimed at investigating physico-chemical, thermodynamic, molecular and structural properties were analysed. The gel strength, melting point and thermal stability of the composite hydrogels were found to decrease marginally compared to the control gel, FSG. It could be understood that the crystalline structure at 2θ = 23° of the FSG-SH, and FSG-FH were not much altered compared to FSG gel. However, alteration in the crystalline structure in FSG-SPH was evident at 2θ = 27.3°. The TGA and DSC analysis revealed the reduction in the thermal stability of FSG on the addition of protein hydrolysates in the process of coacervation to get hydrogel based fish bait. Further, FESEM and AFM analysis indicated FSG-SH as the composite hydrogel with most compact and smooth surface was evident by Ra and Rq values. Among the composite gels, FSG-SH was found to have higher hydrophobicity due to enhanced gel structure. FTIR spectra of FSG and composite gels exhibitted similarity corresponding to amide-A, B, I, II and III bands. However, NMR analysis revealed the existence of notable difference with respect to chemical shift in the range of 7.0–7.75 ppm expressing the presence of aromatic protons of the amino acid phe and N–H protons of amide in all the composite gels. Further, NMR analysis confirmed the role of imino acids (δ CH2 & β CH2 protons) and hydrophobic amino acids (α-CH2 protons) in decrease the physical and thermal properties of the composite gels. The addition of protein hydrolysates with FSG was found to decrease the physical, thermal and structural properties, however improve the aromatic compounds of the composite gels.  相似文献   

4.
Edible bilayer membrane composed of agar (AG) or cassava starch (CAS) as a cohesive structural layer and ethanol-cast shellac layer as a moisture barrier are investigated for their potential use in food preservation as bio-packaging film, membrane or coating. Bilayer membranes containing non-plasticized shellac exhibit low water vapor permeability (WVP), from 0.89 to 1.03 × 10−11 g m−1 s−1 Pa−1. A high value of contact angle (≈92°) and a low liquid water adsorption rate (26 × 10−3 μL s−1) indicate that these barrier layers have a quite hydrophobic surface. However, the rigid and brittle characteristics of shellac induce a lack of integrity for this layer. It tends to be cracked and scaled off. The incorporation of PEG 200 (plasticizer) into shellac improves the flexibility that prevents the defects in structure and reinforces the adhesion between the shellac and the cohesive-structural layer. The use of plasticizer weakly affects the WVP of bilayer membranes; however, the surface hydrophobicity as well as the liquid water adsorption rate is comparable to that of non-plasticized shellac layer. Furthermore, PEG increases the stretchability of bilayer membranes. Either being plasticized or not, shellac layer could improve significantly the functional properties of bilayer barriers and give a promising use as biopackaging.  相似文献   

5.
The thermal and hydrolytic degradation of electrospun gelatin membranes cross-linked with glutaraldehyde in vapor phase has been studied. In vitro degradation of gelatin membranes was evaluated in phosphate buffer saline solution at 37 °C. After 15 days under these conditions, a weight loss of 68% was observed, attributed to solvation and depolymerization of the main polymeric chains. Thermal degradation kinetics of the gelatin raw material and as-spun electrospun membranes showed that the electrospinning processing conditions do not influence polymer degradation. However, for cross-linked samples a decrease in the activation energy was observed, associated with the effect of glutaraldehyde cross-linking reaction in the inter- and intra-molecular hydrogen bonds of the protein. It is also shown that the electrospinning process does not affect the formation of the helical structure of gelatin chains.  相似文献   

6.
New multifunctional materials with both high structural and gas barrier performances are important for a range of applications. Herein we present a one‐step mechanochemical process to prepare molybdenum disulfide (MoS2) nanosheets with hydroxy functional groups that can simultaneously improve mechanical strength, thermal conductivity, and gas permittivity of a polymer composite. By homogeneously incorporating these functionalized MoS2 nanosheets at low loading of less than 1 vol %, a poly(vinyl alcohol) (PVA) polymer exhibits elongation at break of 154%, toughness of 82 MJ/m3, and in‐plane thermal conductivity of 2.31 W/m K. Furthermore, this composite exhibits significant gas barrier performance, reducing the permeability of helium by 95%. Under fire condition, the MoS2 nanosheets form thermally stable char, thus enhancing the material's resistance to fire. Hydrogen bonding has been identified as the main interaction mechanism between the nanofillers and the polymer matrix. The present results suggest that the PVA composite reinforced with 2D layered nanomaterial offers great potentials in packaging and fire retardant applications. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 406–414  相似文献   

7.
Fully-substituted cellulose esters with acyl substituents ranging in size from C2 to C18 were synthesized using the acyl chloride method. Films were prepared from the purified esters by either solvent-casting or compression-molding at elevated temperatures. Oxygen and water vapor permeability was determined under different conditions of pressure and moisture. The relationship between cellulose ester structure and barrier properties was examined. The results revealed linear relationships between water vapor and oxygen permeabilities and molar ester substituent volume as well as several structural factors relating to polymer polarity and hydrophobicity, such as aliphatic (methylene) content, solubility parameter, and contact angle. Films from long chain cellulose esters (LCCE) with acyl substituents in the size range between C8 and C18 were found to represent effective barriers to water vapor transport while their obstruction to the transfer of oxygen remained low. It was concluded that the hydrophobic nature of LCCEs is responsible for the control of water vapor transport, and that spatial factors dominate the transfer of oxygen.  相似文献   

8.
The development of biodegradable materials for tailored applications, particularly in the field of polymeric films and sheets, is a challenging technological goal as well as a contribution to help protect the environment. Poly(lactic) acid (PLA) is a promising substitute for several oil-based polymers; however, to overcome its thermal and mechanical drawbacks, researchers have developed solutions such as blending PLA with polybutylene adipate terephthalate (PBAT), which is capable of increasing the ductility of the final material. In this study, PLA/PBAT binary blends, with minimum possible content of nonrenewable materials, were examined from processing, thermal, morphological, and rheological perspective. An optimized PLA/PBAT ratio was chosen as the polymeric basis to obtain a biodegradable formulation by adding a biobased plasticizer and appropriate fillers to produce a micrometer film with tailored flexibility and tear resistance. The processing technology involved flat-die extrusion, followed by calendering. The tearing resistance of the produced film was investigated, and the results were compared with literature data. A study on the essential work of fracture was implemented to explore the mode III out-of-plane fracture resistance starting from a trouser tear test.  相似文献   

9.
Chitosan samples with different N-deacetylation levels were obtained from β-chitin under heterogeneous alkali conditions. Oxidative depolymerisation was performed to attain low-acetylated chitosan samples with different molecular mass. Water vapour permeability, membrane swelling and tensile mechanical properties were analysed in plasticized self-supporting chitosan membranes. The main purpose was to describe unambigously the effect of the biopolymer molecular mass and acetylation degree on these properties. Commercially available chitosan samples derived from α-chitin were also studied for comparison. The equilibrium degree of swelling in water and the water vapour permeability increase by increasing the molecular mass or the degree of acetylation. Regarding the effect on the mechanical properties, generally harder and tougher membranes were obtained for chitosans with higher molecular mass or lower acetylation degree. These observations are tentatively explained based on the different structural characteristics of the polymer and can lead to a better understanding of the tools necessary to tailor a specific type of chitosan membrane.  相似文献   

10.
Binary composite films were prepared from agar (A) and xanthan gum (X) with different weight percentages. The composite films were transparent, lightweight, eco‐friendly, and biodegradable. The structure and morphology of the prepared agar and AX composite films were confirmed by Fourier transform infrared spectroscopy (FT‐IR), X‐ray powder diffraction (XRD), and scanning electron microscopy (SEM) technique. The glass transition temperature (Tg) and melting temperature (Tm) of the AX composite films was slightly improved, when compared with the neat agar. Thermogravimetric analysis (TGA) analysis showed a considerable increment in the char yield and an improved thermal stability. The tensile strength was in the range of 25 to 40 MPa, and elongation at break was in the range of 28.9 to 39.4%. Though, the water vapor permeability (WVP) value reduced in the composite films the difference was not significant. From the mechanical studies, we can deduce that agar and xanthan gum are compatible and miscible with one another leading to prospects of their composite films being considered for different biomedical and packaging applications.  相似文献   

11.
The purpose of this study was to prepare a novel Clay Bio-Polymer Nanocomposite (CBPN) films by mixing polymer (chitosan, C) with exfoliated nanoclay (kaolinite, k). DRX has shown that the mechano-chemical treatment of kaolinite allows its exfoliation and the significant reduction of its particles size. Physicochemical properties namely thickness, water solubility, color, light transmission and transparency of the films were studied. Fourier transform infrared analysis (FTIR) was to study the interaction between chitosan and kaolinite. Differential scanning calorimetry (DSC) scans showed that the transition temperature (Tg) of films depends on the film's composition. The surface morphology of the films was also studied by scanning electron microscopy (SEM). Results showed that water solubility (Ws) decrease with the increase of the amount of clay. In addition, the presence of clay in the said films increases the mechanical strength. All prepared films were tested for their antimicrobial activities against gram-positive and gram-negative bacteria (strain). It was found that all CBPN films showed good inhibitory activity against all the tested bacteria. The above analysis suggested that the CBPN films could be used as potential candidates for therapeutic application.  相似文献   

12.
Sorption and diffusion of water vapor are investigated gravimetrically for polyimide films. The activity dependence of the solubility and diffusion coefficients, S and D, respectively, is classified under four types: (1) constant S and D type, (2) dual-mode sorption and transport type, (3) dual-mode type followed by a deviation due to a plasticization effect at high vapor activity, and (4) constant S and D type followed by a deviation due to water cluster formation at high activity. For the dual-mode type, the Henry's law component is much larger than the Langmuir component except at low activity, and therefore deviation in behavior from the first type is small. S is larger for polyimides with higher content of polar groups such as carbonyl, carboxyl, and sulfonyl. D is larger for polyimides with a higher fraction of free space, with some exceptions. The polyimide from 3,3′,4,4′-biphenyltetracarboxylic dianhydride and dimethyl-3,7-diaminodibenzothiophene-5, 5-dioxide belongs to the third type and displays both large S and large D. The polyimide from 2,2-bis(3,4-dicarboxyphenyl) hexafluoropropane dianhydride and 4,4′-oxydianiline belongs to the fourth type, and has the largest D but rather small S because of the hydrophobic C(CF3)2 groups. © 1992 John Wiley & Sons, Inc.  相似文献   

13.
Hydrogenated amorphous carbon films were deposited by magnetron sputtering of a carbon target in a methane/argon atmosphere. A postdeposition annealing at 300 °C was performed and the microstructure, bonding structure and mechanical properties of the as‐deposited and annealed films were analyzed and compared directly by high‐resolution transmission electron microscopy, micro‐Raman spectroscopy, XPS, and nanoindentation. The results showed that the carbon films are quite stable upon annealing, since there are only minor changes in microstructure and chemical bonding in the amorphous matrix. The hardness of the films remained unaffected, but the elastic properties were somewhat deteriorated. In comparison to the outcomes of our previous work on the growth of fullerene‐like hydrogenated carbon films, we can state that the formation of fullerene‐like carbon structures requires different sputtering process conditions, such as a higher ion energy and/or different sputtering target. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
Herein, we report for the first time the successful preparation of ethylene–vinyl alcohol (EVOH)/poly(vinyl alcohol) (PVOH) blends by a melt blending process for PVOH volume content ranging from 0 to 30%. Thermal stability up to 270 °C was maintained for all blends. The blends morphology consisted in spherical low size PVOH domains homogeneously dispersed in the EVOH matrix with good interfacial properties. An increase of the mean size of the PVOH domains (from 0.3 to 1.2 μm) and of the size distribution was evidenced as the PVOH content increased. The contribution of each phase to the water sorption and diffusion was clearly demonstrated. The impact of water uptake was investigated on the chains mobility by using Gordon–Taylor law and on the mechanical properties of the blends with respect to the reference polymers. It was pointed out that the reinforcing effect of PVOH phase decreased as the water activity increased. However, a significant elongation at break was maintained, underlining the major role played by the EVOH continuous phase at high water activity. Finally, it was shown that adding PVOH to EVOH up to 15 vol % allowed strengthening the material at low water activity and keeping interesting elongation at break and barrier properties at high water activity. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 838–850  相似文献   

15.
Strength and barrier properties of MFC films   总被引:1,自引:0,他引:1  
The preparation of microfibrillar cellulose (MFC) films by filtration on a polyamide filter cloth, in a dynamic sheet former and as a surface layer on base paper is described. Experimental evidence of the high tensile strength, density and elongation of films formed by MFC is given. Typically, a MFC film with basis weight 35 g/m2 had tensile index 146 ± 18 Nm/g and elongation 8.6 ± 1.6%. The E modulus (17.5 ± 1.0 GPa) of a film composed of randomly oriented fibrils was comparable to values for cellulose fibres with a fibril angle of 50°. The strength of the films formed in the dynamic sheet former was comparable to the strength of the MFC films prepared by filtration. The use of MFC as surface layer (0–8% of total basis weight) on base paper increased the strength of the paper sheets significantly and reduced their air permeability dramatically. FEG-SEM images indicated that the MFC layer reduced sheet porosity, i.e. the dense structure formed by the fibrils resulted in superior barrier properties. Oxygen transmission rates (OTR) as low as 17 ml m−2 day−1 were obtained for films prepared from pure MFC. This result fulfils the requirements for oxygen transmission rate in modified atmosphere packaging.  相似文献   

16.
Transparent surgical adhesives with excellent underwater adhesion and mechanical strength are strongly desirable for various biomedical applications such as wound closure and tissue healing. This is addressed in the present work by the development of biocompatible, transparent, and water-resistant adhesive films prepared from catechol-modified ε-poly(ʟ-lysine) and dopamine hydrochloride modified sodium hyaluronate layers successively applied using the layer-by-layer (LbL) assembly method. The LbL-assembled films are easily released from substrates via a mechanical exfoliation method with a blade to obtain free-standing multilayer films. The exceptional wet adhesion properties of the catechol groups yield films with excellent underwater adhesion strength. The underwater stability and mechanical strength of the free-standing multilayer films are improved via post-facile chemical cross-linking using biocompatible N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride. The post-treated free-standing multilayer films achieve a tensile strength of 0.36 ± 0.20 MPa and an elongation at break of 180.05% in water. The free-standing multilayer films exhibit a high optical transmittance greater than 55% in the visible region.  相似文献   

17.
Fish mince-based films were studied as a function of equilibrium relative humidity and temperature conditions. The sigmoid-shape adsorption isotherm curves were typical of high protein content material and were adequately described, irrespective of temperature, by the Guggenheim-Anderson-de Boer equation. A plasticizing effect of water related to rapid changes in the functional properties was mainly noted at the highest aw and explained by the disruptive water-polymer hydrogen bonding theory. Relatively sharp decreases in force at break, elastic modulus and water vapor barrier properties, and increases in deformation at break were observed at temperature-dependent relative humidities; this relative humidity was reduced by increasing the temperature. The temperature dependence of the hydration effect on functional properties could be explained by the glass transition theory.  相似文献   

18.
《先进技术聚合物》2018,29(6):1706-1717
Biodegradable poly(lactic acid) (PLA)/poly(butylene adipate‐co‐terephthalate) (PBAT) blends and films were prepared using melt blending and blowing films technique in the presence of chain extender‐Joncryl ADR 4370F. The ADR contains epoxy functional groups and used as a compatibilizer. The morphological, mechanical, rheological, thermal, and crystalline properties of the PLA/PBAT/ADR blown films were studied. Scanning electron microscopy micrographs of the films revealed more ductile deformation with increasing PBAT content. The addition of PBAT enhanced the toughness of the PLA film. Tensile tests indicated that the elongation at break increased from 20.5% to 334.6% in the machine direction and from 7.1% to 715.9% in the transverse direction. The Young modulus increased from 2690.5 to 395.6 MPa in the machine direction and from 2623.5 to 154.0 MPa in the transverse direction. The sealing strength of 40/60/0.15 PLA/PBAT/ADR film was the highest among all the samples up to 9.4 N 15 mm−1. These findings gave important implications for designing and manufacturing polymer packaging materials.  相似文献   

19.
Microstructure of the double‐layered ceramic thermal barrier coatings of lanthanum zirconate (LZ) and yttria‐stabilized zirconia (YSZ) with bond coat on Ni‐based superalloy deposited by electron beam evaporation process has been studied. Two sets of combination of LZ and YSZ were deposited: one LZ over YSZ and the other YSZ over LZ. The interfaces of each layer were studied and were found to be sharp; however, some diffusion of elements from below layer was observed. The detailed selected area diffraction of the phases was carried out from the coating cross‐section specimens. The LZ layer was mostly found to be amorphous, and fine columnar growth was observed. The YSZ layer over LZ showed two different crystal structures at interface and at the top surface, which were cubic and tetragonal, respectively. The YSZ layers showed clear columnar grains with feather‐like intercalated structure Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
Electron beam irradiation of poly(iminohexamethylene-iminoadipoyl) (Polyamide-6,6) films was carried out over a range of irradiation doses (20–500 kGy) in air. The mechanical properties were studied and the optimum radiation dose was 200 kGy, where the ultimate tensile stress (UTS), 10% modulus, elongation at break (EB) and toughness showed significant improvement over the unirradiated film. At a dose of 200 kGy, the UTS was improved by 19%, the 10% modulus by 9% and the EB by 200% over the control. The dynamic mechanical properties of the films were studied in the temperature region 303–473 K to observe the changes in the glass transition temperature (Tg) and loss tangent (tan δ) with radiation dose. The storage modulus of the film receiving a radiation dose of 200 kGy was higher than the unirradiated film. The water uptake characteristics of the Polyamide-6,6 films were investigated. The water uptake was less for the films that received a radiation dose of 200 and 500 kGy than the unirradiated film. The role of crystallinity, crosslinking and chain scission in affecting the tensile, dynamic mechanical and water absorption properties was discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号