首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nanocomposites based on biodegradable polycaprolactone (PCL) and organically modified layered silicates (organoclay) were prepared by melt mixing. Their structures and properties were characterized by wide‐angle X‐ray diffraction, thermal analysis, and rheological measurements. The exfoliation of the organoclay was achieved via a melt mixing process in an internal mixer and showed a dependence on the type of organic modifier, the organoclay contents, and the processing temperature. The addition of the organoclay to PCL increased the crystallization temperature of PCL, but a high content of the organoclay could show an inverse effect. The PCL/organoclay nanocomposites showed a significant enhancement in their mechanical properties and thermal stability due to the exfoliation of the organoclay. The nanocomposites showed a much higher complex viscosity than the neat PCL and significant shear‐thinning behavior in the low frequency range. The shear storage modulus and loss modulus of the nanocomposites also exhibited less frequency dependence than the pure PCL in the low frequency range, and this was caused by the strong interactions between the organoclay layers and PCL molecules and by the good dispersion of exfoliated organoclay platelets in the PCL. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 670–678, 2003  相似文献   

2.
Summary: This communication describes the effect of organic modifier miscibility with the matrices, and the effect of the initial interlayer spacing of the organoclay, on the overall morphology and properties of an immiscible polycarbonate/poly(methyl methacrylate) blend. By varying the organic‐modifier‐specific interactions with the blend matrices at the same time as changing the initial interlayer spacing of the organoclay, different levels of compatibilization were revealed. The evidence for the interfacial compatibilization of the organoclay was assessed by scanning electron microscopy observations and was supported by differential scanning calorimetry analyses. The effect on the level of clay exfoliation was also examined.

Differential scanning calorimetry scans of virgin, montmorillonite, and various organically modified montmorillonite‐compatibilized 40PC/60PMMA blends  相似文献   


3.
The thermal degradation behaviour of nanocomposites based upon poly(propylene)/organoclay, modified with protonated octadecyl amine (C18) in comparison to that of non‐exfoliated microcomposites based upon organoclay, modified with protonated butyl amine (C4), was studied by thermogravimetry. In the case of the nanocomposite, the temperature at which volatilisation occurs increases as compared of the microcomposite. Moreover, the thermal oxidation process of the polymer is strongly slowed down in the nanocomposite with high char yield both by a physical barrier effect, enhanced by ablative reassembling of the silicate, and by a chemical catalytic action due to the silicate and to the strongly acid sites created by thermal decomposition of the protonated amine silicate modifier.  相似文献   

4.
In this study, biodegradable poly(caprolactone) (PCL) hybrids with two types of organoclays: Cloisite 30B (30B) and Cloisite 93A (93A) have been prepared by melt mixing and their barrier performance to air permeation and mechanical properties were investigated. The hybrids of PCL/30B were found to be nanocomposites resulted from the strong interaction between organic modifier of 30B and PCL and those of PCL/93A were microcomposites. The barrier performance of PCL/30B nanocomposite film to air permeation was much more improved than pure PCL and PCL/93A microcomposites at low organoclay concentration. With the increase of organoclay content the permeability coefficient was also increased that could attributed to the extra tortuous pathway for gas permeation caused by organoclay exfoliation. The barrier behaviour of PCL/30B nanocomposites could be approximately described by a theoretical model developed for composites. The mechanical properties measurements showed that the reinforcement of organoclay 30B in nanocomposites is more significant than 93A in microcomposites. Both tensile modulus and tensile strength were increased in PCL/30B nanocomposites even at at low amount of organoclay without much loss of strain at break as compared to pure PCL. The significant improvements in both barrier and mechanical properties in PCL nanocomposites could be attributed to the fine dispersion state of organoclay 30B platelets in PCL matrix and the strong interaction between organic modifier of 30B and matrix molecules.  相似文献   

5.
Summary: Preparation and morphology of high density polyethylene (HDPE)/ polyamide 6 (PA 6)/modified clay nanocomposites were studied. The ability of PA 6 in dispersing clays was used to prepare modified delaminated clays, which were then mixed with HDPE. Mixing was performed using melt processing in a torque rheometer equipped with roller rotors. After etching the materials with boiling toluene and formic acid at room temperature, the morphology was examined by SEM analyses, showing that the PA 6 formed the continuous phase and HDPE the dispersed phase. X-ray diffraction patterns show that the (001) peak of the clay is dramatically decreased and shifted to lower angles, indicating that intercalated/exfoliated nanocomposites are obtained. TEM analyses confirmed the typical structure of exfoliated nanocomposites. A scheme for the mechanism of exfoliation and/or intercalation of these HDPE /PA 6/ /organoclay nanocomposites is proposed.  相似文献   

6.
In this study, polymer nanocomposites based on poly(lactic acid) (PLA) and organically modified layered silicates (organoclay) were prepared by melt mixing in an internal mixer. The exfoliation of organoclay could be attributed to the interaction between the organoclay and PLA molecules and shearing force during mixing. The exfoliated organoclay layers acted as nucleating agents at low content and as the organoclay content increased they became physical hindrance to the chain mobility of PLA. The thermal dynamic mechanical moduli of nanocomposites were also improved by the exfoliation of organoclay; however, the improvement was reduced at high organoclay content. The dynamic rheological studies show that the nanocomposites have higher viscosity and more pronounced elastic properties than pure PLA. Both storage and loss moduli increased with silicate loading at all frequencies and showed nonterminal behavior at low frequencies. The nanocomposites and PLA were then foamed by using the mixture of CO2 and N2 as blowing agent in a batch foaming process. Compared with PLA foam, the nanocomposite foams exhibited reduced cell size and increased cell density at very low organoclay content. With the increase of organoclay content, the cell size was decreased and both cell density and foam density were increased. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 689–698, 2005  相似文献   

7.
The use of homoionic organic clays and mixed-ion organic/inorganic clays modified by di- or triamines (Jeffamines), which are being used as epoxy resin curing agents, in the synthesis of polymer nanocomposites has been studied in this work. Our aim is to enhance polymer crosslinking and interfacial adhesion in the nanocomposite structure by utilizing the functionality of the di/triamines on the surface of clay nanolayers and by reducing the organic modifier via formation of homostructured mixed-ion organic/inorganic clays. The results show that the use of homoionic organic clays exchanged with relatively short chain di- or triamines and mixed-ion organic/inorganic clays partially exchanged (ca. 35%) with long chain diamines resulted in intercalated structures with enhanced thermo-mechanical properties (Young's Modulus, Storage Modulus). On the other hand, homoionic organic clays exchanged with long chain diamines and triamines resulted in exfoliated nanocomposites but with compromised mechanical properties due to the plasticizing effect of the long chain amine modifiers.  相似文献   

8.
In this work, preparation and properties of different nanoclays modified by organic amines (octadecyl amine, a primary amine, and hexadecyltrimethylammonium bromide, a tertiary amine) and brominated polyisobutylene‐co‐paramethylstyrene (BIMS)‐clay nanocomposites are reported. The clays and the rubber nanocomposites have been characterized with the help of Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and X‐ray diffraction (XRD). The X‐ray diffraction peaks observed in the range of 3 °–10 ° for the modified clays disappear in the rubber nanocomposites. TEM photographs show predominantly exfoliation of the clays in the range of 12 ± 4 nm in the BIMS. In the FTIR spectra of the nanocomposites, there are common peaks of virgin rubber as well as those of the clays. Excellent improvement in mechanical properties like tensile strength, elongation at break, and modulus is observed on incorporation of the nanoclays in the BIMS. Structure‐property correlation in the above nanocomposites is attempted. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 4489–4502, 2004  相似文献   

9.
Organoclays are usually used as sorbents to reduce the spread of organic compounds and to remove them at contaminated sites. The sorption equilibrium and the mechanisms of volatile organic compounds (VOCs) on organoclays under different humidities are helpful for developing efficient organoclays and for predicting the fate of VOCs in the environment. In this study, the organoclay was synthesized through exchanging inorganic cations by hexadecyltrimethyl ammonium (HDTMA) into montmorillonite, resulting in 12?% of organic content. The surface area of organoclay was smaller than the unmodified clay due to the incorporation of organic cations into the interlayer. Both adsorption on organoclay surface and partition into the incorporated HDTMA in organoclay played roles on the sorption process. Compared the sorption coefficients in montmorillonite and different modified clays, the incorporated organic cations overcame the inhibition effect of hydrophilic surface of clay on the sorption process of hydrophobic organic compounds from water. The sorption coefficients of VOC vapors on organoclay were further characterized using a linear solvation energy relationship (LSER). The fitted LSER equations were obtained by a multiple regression of the sorption coefficients of 22 probe chemicals against their solvation parameters. The coefficients of the five-parameter LSER equations showed that high HDTMA-content montmorillonite interacts with VOC molecules mainly through dispersion, partly through dipolarity/polarizability and hydrogen-bonds as well as with negative π-/n-electron pair interaction. The interaction analysis by LSERs suggests that the potential predominant factors governing the sorption of VOCs are dispersion interactions under all tested humidity conditions, similar with the lower level modified clay. The derived LSER equations successfully fit the sorption coefficients of VOCs on organoclay under different humidity conditions. It is helpful to design better toxic vapor removal strategy and evaluate the fate of organic contaminants in the environment.  相似文献   

10.
We successfully modified organic clays containing the urethane group by introducing a covalent bond between the silanol group on the clay side and the hydroxyl group of organic modifier in the silicate layer using 1,6-diisocyanatohexane (HDI), namely surface-treated montmorillonite (30BM), to increase both basal spacing and the favorable interaction between clay and polymer. The effect of the surface urethane modification of clay on poly (butylene succinate) (PBS)/30BM nanocomposites was studied. The results of transmission electron microscopy micrographs at a 10-nm resolution and X-ray diffraction measurements allowed us to examine the degree of the high exfoliation and the effect of surface urethane modification on clay dispersibility. As results of high exfoliation, PBS/30BM nanocomposites not only exhibited the high thermal properties, but also showed a remarkable increase in physical properties (e.g., tensile strength, Young's modulus, elongation at break) due to enhanced affinity between the clay and PBS matrix. Over all, the results suggest that wide gallery spacing and the predominant affinity between PBS and clay must be considered simultaneously to increase the degree of exfoliation and physical properties as key factors.  相似文献   

11.
Polyamide-6 nanocomposites were prepared from a new phosphonium organoclay obtained at pilot scale in supercritical carbon dioxide (scCO2) and a commercially available ammonium modified-silicate. The composites were homogenised by twin-screw extrusion, then specimens for testing were prepared by injection moulding. The clay content of the composites was varied from 0 to 7 vol.% in 7 steps. The clays were characterised in detail; they differed in their surface coverage and gallery structure, while their particle size was similar and their surface energy differed only slightly. X-ray diffraction, electronic microscopy and rheology were used for the characterisation of composite structure. Different gallery structure of the clays led to dissimilar extent of exfoliation. The phosphonium organoclay exfoliated better in PA than the silicate treated with the ammonium salt in spite of its smaller surface coverage. The nanocomposites showed the usual complex structure: besides individual platelets and intercalated stacks, large particles were also present and the development of a silicate network could be shown at large clay contents. Quantitative determination of the extent of reinforcement revealed two determining factors: contact surface and strength of interaction. The first increases with exfoliation, but the latter decreases as an effect of organophilisation. The extent of exfoliation was also estimated quantitatively, and the calculation confirmed the results of qualitative evaluation showing larger extent of exfoliation for the scCO2-prepared phosphonium clay.  相似文献   

12.
In this study, polyurethane/organically modified layered silicate (organoclay) nanocomposites were prepared through in situ polymerization in the presence of organoclay. Phase morphology of the polyurethane/organoclay nanocomposite was investigated by small-angle X-ray scattering (SAXS) and atomic force microscopy (AFM). The results suggest that the inter-domain repeat distance decreased with the introduction of organoclay. The organoclay has a more significant effect on the inter-domain repeat distance at a low hard segment content. Also with the increase of the hard segment, the inter-domain repeat distance and domain size increased markedly. The size of hard domain of the polyurethane was found to be in the range of 12-32 nm in this case, and it keeps nearly unchanged with the clay content. It is suggested by AFM phase imaging technique that the hard domain can self-organize further to form spherical aggregates. The introduction of clay into the polyurethane matrix resulted in the decrease in the size of the spherical aggregates from ∼800 nm to ∼500 nm, indicating clay has an important effect on the aggregation behavior of hard domains. The effect of clay on the surface energy was examined by means of AFM and goniometry techniques. The results obtained by two methods are consistent, i.e., with the increase of clay content, the surface energy decreased due to the effect of organic modifier.  相似文献   

13.
A series of organomodified montmorillonite clays (OMMTs) such as intercalated modified montmorillonite with alkylammonium or alkylphosphonium salts (AA-MMT or AP-MMT) and double modified MMT with alkylammonium or alkylphosphonium salts and silane coupling agent (SAA-MMT or SAP-MMT) was successfully prepared in this study. The effect of the amount of nanofiller and type of organic modifier of the OMMT on poly(methyl methacrylate) (PMMA)/OMMT nanocomposites synthesized by in situ bulk polymerization was investigated. The structural and morphological characteristics of the obtained nanocomposites were studied by means of X-ray diffraction and transmission electron microscopy, indicating that exfoliation is more likely to occur in case of nanocomposites with small amounts of AA-MMT and SAA-MMT. The kinetic study results showed that the presence of AA-MMT enhances polymerization kinetics, while AP-MMT acts rather as a reaction retarder. The presence of the nanofiller and the augmentation of the OMMT content increased the thermal stability of all nanocomposites, as measured by thermogravimetric analysis, as well as their average molecular weight measured by gel permeation chromatography. Measurements of the tensile properties revealed that the Young’s modulus increased for all nanocomposites along with a decrease of the ultimate strain, while the tensile strength varied regardless of the extent of exfoliation.  相似文献   

14.
Summary: Three kinds of organoclay, i.e., Cloisite15A® (C15A), Cloisite20A® (C20A), and Cloisite30B® (C30B) were modified with silane to prepare twice functionalized organoclay (TFC). The pristine Cloisite® clays and the TFC were melt compounded with poly(L ‐lactide) (PLLA) and morphology of the composites was observed to elucidate the effects of the d001 gallery distance, the epoxy content of TFC, and the compatibility between the organic ammonium surfactant and PLLA on the degree of exfoliation of the clay layers.

Plots of ITFC/ICloisite versus epoxy content for PLLA composites with (a) Cloisite15A® (C15A), (b) Cloisite20A® (C20A), (c) Cloisite30B® (C30B).  相似文献   


15.
Polypropylene (PP) nanocomposites were prepared using montmorillonite with different organic modifiers, and the effect of processing aid (EMCA and PPG) on the dispersion of the nanofillers in the PP matrix was evaluated by WAXD, TEM, DSC, TGA, DMA, and mechanical tests. The present study helps to clarify the effects of the organic modifiers of clays on the intercalation and exfoliation processes. Nanocomposites of intercalated and partially exfoliated morphology were obtained, mainly when a low amount (1:1) of PP-g-MA/MMT was used. The results of the tests on mechanical properties showed that the clays with larger d001 (C-15A and Nanofil 5) using PPG presented a more considerable gain in impact strength. The nanocomposites using clays with smaller d001(C-20A) presented larger modulus when compared with those of pristine PP. The heat deflection temperature, crystallization temperature, and thermal stability of the nanocomposites were improved compared to neat PP. The DMA results showed that the organoclay improved the modulus of PP, but decreased the Tg. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 2519–2531, 2008  相似文献   

16.
Six kinds of organoclays were prepared through three kinds of polyols (PTMG, PEA and PCL) to investigate the effects of molecular weight and the chemical structure of organifiers. PTMG based organoclays showed higher ion-exchanged fraction than other organoclays and long chain organifier showed better efficiency in ion-exchanged fraction in the case of PTMG based organifiers. From WAXD and TEM analysis, it was confirmed that PTMG based organoclays formed partially exfoliated or fully exfoliated silicate layer structures. PDLA/clay nanocomposites were prepared by in-situ ring-opening polymerization of D-lactide with PTMG based organoclays as macro-initiators in the presence of equimolar Sn(Oct)2/PPh3 complex catalysts. The molecular weight of PDLA/clay nanocomposite decreased as increasing the feeding amount of organoclay because organoclay had hydroxyl terminal groups which can initiate the ring-opening polymerization of D-lactide. From TGA analysis, thermal stabilities of PDLA/clay nanocomposites improved with increasing organoclay content. From WAXD and TEM analysis, organoclay which was prepared by high molecular weight of PTMG based organifier was effective on the exfoliation of silicate layers in the in-situ polymerized PDLA/clay nanocomposite.  相似文献   

17.
采用离子交换法, 用十六烷基三甲基溴化铵处理钙基蒙脱土(MMT), 使蒙脱土的层间距由1.49 nm扩大到2.21 nm, 制备了环氧树脂/ BADK/MMT纳米复合材料, 并用XRD等手段研究了有机蒙脱土在环氧树脂中的插层及剥离行为. 研究结果表明, 蒙脱土含量及环氧树脂与有机土的混合温度和时间均对固化后复合材料的剥离产生影响, 只有在特定条件下才能得到剥离型纳米复合材料.  相似文献   

18.
采用不同分散方法(机械搅拌、高速均质搅拌和球磨分散)制备环氧树脂粘土纳米复合材料,研究了分散方法对不同有机粘土解离结构和纳米复合材料力学性能的影响,并在此基础上探讨了粘土的解离机理.结果表明,普通机械搅拌只能使小粒径粘土或大粒径粘土团聚体的外部片层解离;施加一定的外力(如高速均质搅拌)促进粘土团聚体分散,有利于粘土片层的解离;利用剪切摩擦作用较强的球磨法分散粘土,不同处理剂改性粘土的内外片层都可以充分解离,而有机改性剂中酸性质子的催化作用对粘土片层解离的影响不大,只要粒径足够小,片层解离的驱动力(基体弹性力、反应性等)能够克服其所受阻力(片层引力、层外基体粘性阻力、层内粘性引力等),粘土内外各片层将会同时向外迁移而解离.纳米复合材料的力学性能大大改善,冲击强度和弯曲强度分别提高近50%和8%;  相似文献   

19.
Nanocomposites of polypropylene (PP) were prepared by melt mixing using maleic anhydride modified polypropylene (PPg) and different organophilic montmorillonites (OMMT). The selected organo-modified clays differ in their initial particle size, amount and type of surfactant and/or their cation-exchange capacity. All composites have 80, 15 and 5 wt% of PP, PPg and OMMT, respectively. The materials were characterized using TGA, XRD, SEM and rotational rheometry. Cloisite 15A, Cloisite 93A, Nanomer I44 and a bentonite modified with octadecylammonium (B18) display intercalation and exfoliation after mixing and annealing and produce nanocomposites with different degrees of ‘solid-like’ rheological behavior. The composites based in Cloisite 15A and Nanomer I44, which use the same intercalant, show very similar phase structure and rheological response, regardless of the origin and initial characteristics of the clays. These nanocomposites are the most affected by the thermal history during rheological characterization in the molten state. On the other hand, Cloisite 10A and Cloisite 30B display collapse of the silicate layers after compounding with no evidence of exfoliation.  相似文献   

20.
Effect of very small quantities of organically modified layered silicate clay on the nucleation of polypropylene (PP), as an additive at ppm levels dosage was investigated, in combination with two of the most commercially exploited organic nucleating agents, one of which is a cyclic aromatic phosphinate salt and the other is bis(3,4‐dimethylbenzylidene) sorbitol, each representing a separate class of nucleating molecules by itself. Substitution of a considerable fraction of either of these organic nucleating agents with organically modified inorganic nanoclay was seen to result in a unique synergy between the two in nucleating PP. Polarized light microscopy studies of these synergistic formulations with organoclay to nucleating agent ratios of 1:1 and 1:3 totaling 0.2 weight percent in PP showed significant reduction in spherulite size from that of non‐nucleated PP, and compared with the samples containing exclusive organic nucleating agent at similar loading. Differential scanning calorimetric studies provided evidence and insight into such synergistic behavior. Crystallization and supercooling temperatures for the synergistic formulations were comparable for those formulations containing only organic nucleating agents, indicating comparable nucleation efficiency, whereas organoclay alone, although showing some extent of nucleation, was clearly poorer in efficiency. Wide and small angle X‐ray scattering studies further explained these observations. An increase in the gamma polytype fraction was seen in samples that contained both organoclay and nucleating agent, pointing to the role of organoclay as a gamma nucleator. Organoclay was found to be completely exfoliated in these synergistic formulations and was seen as well‐dispersed, single platelets in the PP matrix. A hybrid network consisting of exfoliated organoclay platelets and organic nucleating agent molecules was proposed, which is more stable and stiffer than the network formed by nucleating agent alone. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1786–1794, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号