首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel intumescent flame retardant, containing ammonium polyphosphate (APP), and poly(hexamethylene terephthalamide) (PA6T), was prepared for flame retarding polypropylene (PP). The flame retardation of the PP composites was characterized by limiting oxygen index (LOI). The thermal degradation of the composites was investigated by means of thermogravimetric analysis (TG) and TG coupled with Fourier transform infrared spectroscopy (TG-FTIR). The morphology of the char obtained after combustion of the composites was studied by scanning electron microscopy. It has been found the intumescent flame retardant showed good flame retardancy, with the LOI value of the PA6T/APP/PP (5/25/70) system increasing from 17.5 to 32. Meanwhile, the TG and TG-FTIR work indicated that PA6T could be effective as a carbonization agent and there was a synergistic reaction between PA6T and APP, which effectively promoted the char formation of the PP composites. Moreover, it was revealed that uniform and compact intumescent char layer was formed after combustion of the intumescent flame retarded PP composites.  相似文献   

2.
Exfoliated clay nanocomposites of flame retarded/glass fibre reinforced polyamide 6 were prepared by twin-screw extrusion compounding. A flame retardant system based on phosphorus compounds and zinc borate was used at various levels in glass fibre reinforced PA6 and nanocomposites. Thermal stability and combustion behaviours were evaluated by TGA, LOI, UL94 and cone calorimetry. Substitution of a certain fraction of the flame retardant with nanoclays was found to significantly reduce the peak heat release rate and delay ignition in the cone calorimeter. Moreover, remarkable improvements were obtained in LOI along with maintained UL94 ratings. Residue characterization by FTIR, XRD and SEM ascribed the enhanced flame retardancy of nanocomposite formulations to the formation of a glassy boron/aluminium phosphate barrier reinforced by clay layers at the nanoscale. The physically strong and consolidated barriers formed from nanocomposites were much more effective in impeding heat and mass transfer compared to those from conventional formulations.  相似文献   

3.
The progress of flame retarded polymer nanocomposites and coatings in China over the past decades are described in this review. Emphasis on flammability performance of polymer nanocomposites containing nanofillers, mainly layered inorganic compounds, nanofibers and nanoparticles, combined with conventional flame retardant additives are addressed based on the open literature. Polymeric coatings with improved flame retardancy prepared using a wide variety of additives and UV‐curing technology are also introduced. Derived from this research, the combination of multiple methods and technologies including catalyst and nanotechnology, is predicted to have a high probability to enhance char formation and improve the flame retardancy of polymeric materials. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
Polyaniline nanofibers and their composites with carbon nanotubes were developed as an effective flame‐retardant material using a facile green method. Polyaniline nanofibers were used as a smart flame‐retardant for acrylonitrile–butadiene–styrene polymer. The polyaniline nanofibers were dispersed in polymer matrix forming well‐dispersed polymer nanocomposites. Effect of polyaniline nanofiber mass ratio on the polymer nanocomposite properties was studied. Polyaniline nanofiber composites with carbon nanotubes were also dispersed in polymer matrix. The thermal stability and flammability properties of the polymer nanocomposites were investigated. The rate of burning of polymer nanocomposites achieved 82.5% reduction (7.32 mm/min) compared with virgin polymer (42.5 mm/min). The reduction in peak heat release rate and total heat release of the polymer nanocomposites containing nanofibers achieved 74 and 34%, respectively. Interestingly, the average mass loss rate was significantly reduced by 58% and the emission of carbon monoxide and carbon dioxide gases were suppressed by 20 and 47%, respectively. The effect of polyaniline nanofibers composites on the flammability of polymer nanocomposites was also studied. Polyaniline nanofibers and their composites were characterized using Fourier transform infrared spectroscopy and transmission and scanning electron microscopy. The dispersion of polyaniline nanofibers in polymer nanocomposites was characterized using transmission electron microscopy. The different polymer nanocomposites were characterized using thermogravimetric analysis, UL94 flame chamber, and cone calorimeter tests. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
α-Zr phosphate (hereafter referred to as ZrP) based composites were prepared by melt blending in order to improve the flame retardancy properties of polyamide 6 (PA6), polyethylene terephthalate (PET), polypropylene (PP) and ethylene vinyl acetate copolymer (EVA). Different morphologies are distinguishable by electron microscopy: PA6-ZrP seems to be a nanocomposite by Transmission Electron Microscopy (TEM) whereas PET-, PP- and EVA-ZrP blends appear micro-composites by X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM) analyses. ZrP acts as flame retardant in PA6 reducing the total heat evolved and consequently the heat release rate during the combustion measured by cone calorimetry. Moreover, ZrP reduces the flammability of PET and EVA acting in synergistic effect with phosphorous based flame retardants. Indeed, it is showed that it is possible to reduce the amount of phosphorous flame retardant adding ZrP to reach UL94 classification V0 for both polymers.  相似文献   

6.
Polypropylene/intumescent flame retardant/organophilic Fe-montmorillonite (PP/IFR/Fe-OMT) nanocomposites were prepared by melting intercalation. In order to investigate the effect of structural Fe3+ in the PP/IFR system, the corresponding PP/IFR and PP/IFR/Na-OMT composites were prepared under the same conditions. The thermo-gravimetric analysis data show that the PP/IFR/Fe-OMT nanocomposites have higher thermal stability than the PP/IFR and PP/IFR/Na-OMT composites. The flame retardant results indicate that the limiting oxygen index values of the nanocomposites with Fe-OMT are basically higher than those of the pure PP and the composites containing IFR or Na-OMT/IFR. And the addition of a suitable amount of Fe-OMT in PP/IFR composites can apparently favor UL94 test, and no dripping phenomenon was found. The cone calorimeter test indicates that the heat release rate (HRR) is significantly reduced by the formation of the nanocomposites, and the HRR of the PP/IFR/Fe-OMT nanocomposites are decreased in comparison with those of the PP/IFR/Na-OMT nanocomposites. It is noteworthy that Fe-OMT is helpful to smoke suppression by smoke density test.  相似文献   

7.
The effect of polyol molecular weight and functionality on nanodispersion of clay in PU/clay nanocomposites and the investigation of their thermal and combustion properties are reported and discussed. Lamellar elastomer polyurethane nanocomposites were synthesized using polyols with different molecular weight and functionality and according to these parameters they show several degrees of dispersion which affect their thermal and combustion behaviour. A barrier effect of clay layer is shown in TGA experiments by a delay of thermal degradation products release in nanocomposite materials compared to the virgin polymer; this barrier effect also leads to formation of char during combustion which lowers the peak of rate of heat release in cone calorimeter tests and eliminates fire-induced dripping of the nanocomposite sample during UL 94 test. However, in order to achieve non-burning behaviour nanocomposite technology must be combined with conventional flame retardant technology.  相似文献   

8.
Recently, noticeably enhanced flame retardancy of multilayered self-reinforced composites, flame retarded with common ammonium polyphosphate based intumescent system, was described. In this paper the observed novel flame retardant synergism between intumescent additive system and highly oriented polymer fibres is further studied. The ignitability and combustion behaviour of flame retarded multilayer self-reinforced composites were compared to flame retardant compounds, prepared by simple melt compounding, of identical low additive contents, both when the heat was applied parallel (UL-94 tests) and perpendicular (cone calorimetric tests) with the direction of the embedded oriented tapes in self-reinforced composites. SEM and EDS analyses supported the different foaming process of the two types of samples to be understood, while the structure and character of the finally (after combustion) obtained charred layers were examined by compression tests. Considering the results of all the applied testing methods, the complex picture of the mechanism behind the enhanced flame retardant efficiency of flame retarded self-reinforced composites could be clarified.  相似文献   

9.
纳米阻燃高分子材料:现状、问题及展望   总被引:2,自引:0,他引:2  
纳米阻燃体系是一种新型的聚合物阻燃体系,被誉为阻燃技术的革命.极少量(≤5wt%)纳米阻燃剂的加入即能显著降低高分子材料燃烧时的热释放速率(HRR)和烟密度(SEA),延缓其燃烧过程,还能不同程度地提高材料的力学性能.本文总结了近年来国内外纳米阻燃领域的进展,介绍了本课题组在纳米阻燃方面所做的工作,探讨了纳米阻燃研究中存在的问题,并对其未来的发展进行了展望.  相似文献   

10.
Polypropylene (PP), with characteristics of good mechanical properties, good resistance to water and low cost, has been widely used in many fields such as building, transport, furniture and electrical industries. However, a fateful drawback of polypropylene is its high flammability,restricting its wider applications. Addition of flame retardants is an effective way to improve its flame retardancy. An effective halogen-free flame retardant system used is the mixture of melamine, ammounium phosphate and pentaerythritol (intumescent flame retardant). But how to enhance the dispersion of this mixture in polypropylene matrix is a big problem. A self-made mechanochemical reactor, pan type milling equipment, can exert strong shear and squeeze forces,and has good mixing function. As a result, a uniform dispersion of flame retardants in the polymer matrix can be expectably obtained by using this equipment.In this paper, flame-retarded Polypropylene (PP) composites with intumescent flame retardant (IFR) were prepared via solid state mechanochemical method (pan-mill) and conventional method (twin-roll masticator) respectively. Particle diameter analysis, melt flow index (MFI), differential scanning calorimetry (DSC) and scanning electronic microscopy (SEM) were used to characterize these composites, and the mechanical properties and flame retardancy were also determined. The experimental results showed that the blend of PP and IFR were effectively pulverized from 3~4 mm to less than 300i m under the strong shear forces of pan-mill. With increasing the milling cycles, the MFI value of IFR/PP blend decreased first and then increased. The mechanical properties and flame retardancy of IFR/PP blends prepared by solid state mechanochemical method were proved to be better than those prepared by conventional method because of the dispersing function of pan-mill.Also it was found that IFRs were the nucleating agent for PP and the crystallinity of PP increased first and then decreased with increasing the milling cycles.  相似文献   

11.
In order to achieve acceptable levels of flame retardancy of polymers, phosphorus-based flame retardant (FR) additives at about 20-30% w/w are required which is too high for conventional synthetic fibres. To know whether more finely sized particles of conventional FRs with or without nanoclay are more effective at the same concentration, composites of PA6 with bentonite and ammonium polyphosphate (APP) have been prepared by melt processing in a twin-screw extruder. XRD peaks and TEM images of PA6/Org-bentonite composite show partially ordered intercalation and ordered exfoliation. Thermal analysis in He shows that thermal stability of PA6 nanocomposite has increased by 18 °C compared with pure PA6 during degradation after 425 °C but it has decreased by 100 °C on inclusion of APP in PA6/nanoclay composites. The char yield is increased by 20% in PA6/bentonite/APP composites. No effect on thermal stability or char yield is observed by reducing the particle size of APP.  相似文献   

12.
In this paper, a novel synergistic flame retardant system containing magnesium hydroxide (MH) and methyl-blocked novolac (MBN) synthesized by Williamson ether route, were used for the flame retardance of polyamide-6 (PA6). The investigations showed that the thermal oxidative stability of MBN was obviously enhanced in the presence of MH compared with virgin novolac due to the decrease of phenol hydroxide groups subjected to be oxidized. It proved that MBN plays double roles: on the one hand, it remarkably promotes char formation and effectively eliminates the melt drips of PA6, therefore endows the materials with good flame retardancy; on the other hand, it also serves as an efficient lubricant and compatibilizer between MH and PA6, leading to the great improvement of the processability, as well as finer dispersion of MH in matrix, thus the flame retardant PA6 with good comprehensive performance can be obtained.  相似文献   

13.
Polymer nanocomposites are a new class of flame retarded materials which have attracted much attention and considered as a revolutionary new flame retardant approach.A very small amount of nano flame retardants (normally < 5 wt%) can significantly reduce the heat release rate (HRR) and smoke emission (SEA) during the combustion of polymer materials.Moreover,the addition of nano flame retardants can also improve the mechanical properties of polymer materials compared with the deterioration of traditional fla...  相似文献   

14.
Flame retarded polymer formulations are mainly used in long-term applications whereas antioxidants, light stabilizers and co-additives provide the requested lifetime of plastic materials. However many flame retardants influence the oxidative and photooxidative stability of polymers often in a negative way resulting in early failure and loss in value. Moreover insufficient (photo)oxidative stability of the flame retardant itself may reduce the flame retardance performance over time. Therefore, there is a need to develop adjusted stabilizer systems considering the type of flame retardant, the polymer substrate and the intended application. Therefore, the influence of flame retardants on the (photo)oxidative stability of selected polymers is reviewed and strategies to extend the lifetime of flame retarded polymers are provided. In addition, the specific requirements of the stabilization of nanocomposites as potential flame retardant components are covered.  相似文献   

15.
Polypropylene/organoclay (PP/OMMT) nanocomposites were prepared in a twin-screw corotating extruder using two methods. The first method was the dilution of commercial (PP/50% Nanofil SE3000) masterbatch in PP (or PP with commercial flame retardant). The second method consists of two stages was the extrusion of maleic anhydride grafted polypropylene (PP-g-MAH) with commercially available organobentonite masterbatch in first stage and dilution of the masterbatch in PP (or PP with commercial flame retardant) in second stage. XRD results showed no intercalation in composites obtained from commercial masterbatch without compatibilizer and semi - delamination for compatibilized systems. Tensile tests revealed that nanocomposites with 5% of organoclay have a slightly higher tensile modulus and tensile strength than pristine PP, however addition of the commercial flame retardant (FR) reduces mechanical parameters to roughly the level of those for neat PP. PP/OMMT composites have approx. 25% higher oxygen index than pristine PP, and this changes slightly after the addition of FR. The cone calorimeter tests showed a decrease of a heat release rate (HRR) and a mass loss rate (MLR) after the addition of FR.  相似文献   

16.
In this study, polypropylene (PP)/thermoplastic polyurethanes (TPU) filled with inorganic intumescent flame retardant expanded graphite (EG) was prepared by melt blending in a twin-screw extruder. The thermal stability, fire retardancy, mechanical properties, and fracture morphology of PP/TPU composites with treated and untreated EG were investigated by thermogravimetric analysis, cone calorimeter, and scanning electron microscope. The results showed that both untreated and treated EG can greatly enhance the thermal stability and fire resistance of polymer matrix materials. Compared with untreated EG, treated EG can further improve the flame retardancy of the composites. For example, treated EG can further reduce the heat release rate, total heat release, and CO emissions of the composites in the combustion. Surface treatment of EG could significantly improve elongation at break and impact strength of PP/TPU/EG composites due to its enhanced interfacial adhesion and the good dispersion of EG particles in the polymer matrix.  相似文献   

17.
In this paper, the effect of organo‐modified montmorillonite (OMMT) on a novel intumescent flame retardant (IFR) system was studied in poly(1,4‐butylene terephthalate) (PBT) composites containing microencapsulated ammonium polyphosphate (MAPP) and melamine cyanurate (MC). Nanocomposite morphology was characterized by X‐ray diffraction (XRD) and transmission electron microscopy (TEM). Thermal decomposition analysis was studied via thermogravimetric analysis (TGA). Combustion behavior was investigated by microcombustion calorimeter (MCC), limited oxygen index (LOI), and UL‐94 test. Residues obtained after samples treated in muffle furnace at 500°C under air condition for 10 min were analyzed through X‐ray powder diffraction (XRD) and scanning electron microscopy (SEM). It was found that the addition of OMMT improved the flame retardancy of PBT/IFR composites significantly. A mass of microcomposite structure particles formed in the heating or combustion process of PBT/IFR/OMMT nanocomposites were found for the first time in the SEM images, which is strong evidence to confirm the migration or accumulation of montmorillonite and carbonaceous‐silicate materials during the heating or combustion process. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
Piperazine cyanurate (PCA) is designed and synthesized via hydrogen‐bonding self‐assembly reactions between piperazine and cyanuric acid. Chemical structure and morphology of PCA are investigated by Fourier transform infrared spectroscopy and scanning electron microscopy, respectively. The prepared PCA is combined with ammonium polyphosphate (APP) to prepare flame‐retardant polypropylene (PP) composites. Thermostability, flammability, and combustion characteristics of PP composites are analyzed. The maximum thermal decomposition rate of flame‐retarded PP composites has an apparent reduction compared with that of pure PP, and obvious char is left for this intumescent flame retardant (IFR) system of APP and PCA. A high limiting oxygen index value and UL‐94 V‐0 rating are achieved with addition of APP and PCA. In cone calorimetry test, heat and smoke releases of PP are significantly decreased by this IFR system. Gaseous decomposition products during the thermal decomposition of flame‐retardant composites are studied. Chemical structure and morphology of char residues are analyzed. The results illustrate that APP and PCA have a superb synergistic action in the aspect of improvement in fire safety of PP. A possible flame‐retardant mechanism is concluded to reveal the synergism between APP and PCA.  相似文献   

19.

The flammability and the thermal oxidative degradation kinetics of expandable graphite (EG) with magnesium hydroxide (MH) in flame‐retardant polypropylene (PP) composites were studied by limiting oxygen index (LOI), UL‐94 test, and thermogravimetric analysis (TGA). The results show that EG is a good synergist for improving the flame retardancy of PP/MH composite and the effect is enhanced with decreasing EG particle size. The Kissinger method and Flynn‐Wall‐Ozawa method were used to determine the apparent activation energy (E) for degradation of PP and flame retarded PP composites. The data obtained from the TGA curve indicate that EG markedly increases the thermal degradation temperature of PP/MH composites and improves the thermal stability of the composites. The kinetic results show that the values of E for degradation of flame retarded PP composites is much higher than that of neat PP, especially PP/MH composites with suitable amount of EG, which indicates that the flame retardants used in this work have a great effect on the mechanisms of pyrolysis and combustion of PP.  相似文献   

20.
Poly (diallyldimethylammonium chloride) (PDDA) and ammonium polyphosphate (APP) deionized chloride ions and ammonium ions by ionizing in aqueous solution respectively, then combined to form poly (diallyldimethylammonium) and polyphosphate (PAPP) polyelectrolyte complexes as an all‐in‐one flame retardant for polypropylene and its composites were characterized by Fourier transform infrared (FTIR) spectroscopy and X‐ray photoelectron spectroscopy. One flame retardant system composed of PAPP and PP, the other flame retardant system composed of PAPP, Polyamide‐6 (PA6) and PP were tested by limiting oxygen index (LOI), UL‐94, cone calorimeter tests and thermogravimetric analysis (TGA) and compared with pure PP. The results showed that the LOI value of PP/PAPP composite can reach 27.5%, and UL‐94 V‐2 rating can be reached at 25 wt% PAPP loading. Meanwhile the cone calorimetry results displayed that the peak heat release rate (PHRR) and total heat release (THR) were reduced up to 69.3% and 22.5%, respectively, compared with those of pure PP. After adding 5 wt% PA6, the carbon source missing due to the early PAPP decomposition can be made up, and PHRR and THR can be further reduced slightly. The flame retardant mechanism of PAPP was studied by FTIR spectroscopy and X‐ray photoelectron spectroscopy. Six‐membered ring of C─N containing conjugate double bonds, cross‐linked phosphate structure formed stable, intumescent, compact char layer which greatly improved the flame retardancy of PP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号