首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The glycolysis of poly(ethylene terephthalate) (PET) was studied using several ionic liquids and basic ionic liquids as catalysts. The basic ionic liquid, 1-butyl-3-methylimidazolium hydroxyl ([Bmim]OH), exhibits higher catalytic activity for the glycolysis of PET, compared with 1-butyl-3-methylimidazolium bicarbonate ([Bmim]HCO3), 1-butyl-3-methylimidazolium chloride ([Bmim]Cl) and 1-butyl-3-methylimidazolium bromide ([Bmim]Br). FT-IR, 1H NMR and DSC were used to confirm the main product of glycolysis was bis(2-hydroxyethyl) terephthalate (BHET) monomer. The influences of experimental parameters, such as the amount of catalyst, glycolysis time, reaction temperature, and dosages of ethylene glycol on the conversion of PET, yield of BHET were investigated. The results showed a strong influence of the mixture evolution of temperature and reaction time on depolymerization of PET. Under the optimum conditions of m(PET):m(EG): 1:10, dosage of [Bmim]OH at 0.1 g (5 wt%), reaction temperature 190 °C and time 2 h, the conversion of PET and the yield of BHET were 100% and 71.2% respectively. Balance between the polymerization of BHET and depolymerization of PET could be changed when the reaction time was more than 2 h and contents of catalyst and EG were changed.  相似文献   

2.
We describe the organocatalytic depolymerization of poly(ethylene terephthalate) (PET), using a commercially available guanidine catalyst, 1,5,7‐triazabicyclo[4.4.0]dec‐5‐ene (TBD). Postconsumer PET beverage bottles were used and processed with 1.0 mol % (0.7 wt %) of TBD and excess amount of ethylene glycol (EG) at 190 °C for 3.5 hours under atmospheric pressure to give bis(2‐hydroxyethyl) terephthalate (BHET) in 78% isolated yield. The catalyst efficiency was comparable to other metal acetate/alkoxide catalysts that are commonly used for depolymerization of PET. The BHET content in the glycolysis product was subject to the reagent loading. This catalyst influenced the rate of the depolymerization as well as the effective process temperature. We also demonstrated the recycling of the catalyst and the excess EG for more than 5 cycles. Computational and experimental studies showed that both TBD and EG activate PET through hydrogen bond formation/activation to facilitate this reaction. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

3.
Effective and efficient hybrid depolymerisation technologies are emerging as high potential sustainable routes with considerable benefits over conventional recycling methods for the achievement of circular economies for plastics. Herein, combined green and fast glycolysis-hydrolysis depolymerization of polyethylene terephthalate (PET) was carried out under microwave irradiation (MW) with excellent efficiencies. In MW assisted glycolysis of PET, the catalytic activity of two deep eutectic solvents (DES) based on (choline chloride-urea (DES 1)) and (choline chloride-thiourea (DES 2)) was evaluated and compared. Optimised glycolysis conditions were determined using Box Behnken Design (BBD) to attain maximum weight loss of PET, low crystallinity and increased carbonyl index of residual PET. DES volume of 4 mL, 5.5–6 mL of ethylene glycol, and 0.5 min MW irradiation time resulted in a prominent rise in PET weight loss and carbonyl index of residual PET. DES 2 showed an improved catalytic activity than that of DES 1 which is associated to its stronger interaction with EG and PET polymer chains during the course of the reaction. Residual PET obtained post glycolysis reaction was further depolymerized using MW assisted hydrolysis in the presence of weakly basic Na2CO3 and EG. Within 3-minute, the proposed sequential depolymerization technologies facilitated ≈99% conversion of PET to terephthalic acid (TPA), monohydroxyethyl terephthalate (MHET), and bis (2-hydroxyethyl) terephthalate (BHET) monomers produced at a yield of 62.79–80.66%, 17.22–34.79% and 0.54–0.59% respectively. Application on post-consumer PET sample also revealed very satisfactory results with 96.77–98.25% PET conversion and 60.98–78.10% yield of TPA.  相似文献   

4.
Poly(ethylene terephthalate) [PET] fibre wastes from an industrial manufacturer was depolymerised using excess ethylene glycol [EG] in the presence of metal acetate as a transesterification catalyst. The glycolysis reactions were carried out at the boiling point of ethylene glycol under nitrogen atmosphere up to 10 h. Influences of the reaction time, volume of EG, catalysts and their concentrations on the yield of the glycolysis products were investigated. The glycolysis products were analysed for hydroxyl and acid values and identified by different techniques, such as HPLC, 1H NMR and 13C NMR, mass spectra, and DSC. It was found that the glycolysis products consist mainly of bis(hydroxyethyl)terephthalate [BHET] monomer (>75%) which was effectively separated from dimer in quite pure crystalline form.  相似文献   

5.
Sub- and supercritical glycolysis of polyethylene terephthalate (PET) with ethylene glycol (EG) to bis(2-hydroxyethyl) terephthalate (BHET) was investigated for the purpose of developing a PET recycling process. Supercritical glycolysis was carried out at 450 °C and 15.3 MPa while subcritical glycolysis was carried out at 350 °C and 2.49 MPa or at 300 °C and 1.1 MPa. High yields (gt; 90%) of the monomer BHET were obtained in both super- and subcritical cases. For the same PET/EG weight ratio of about 0.06, the optimum reaction time was 30 min for supercritical glycolysis and 75 and 120 min for two cases of subcritical glycolysis. GPC, RP-HPLC, 1H NMR and 13C NMR, and DSC were used to characterize the polymer and reaction products. Supercritical glycolysis will be suitable to a process requiring a high throughput due to its short reaction time.  相似文献   

6.
In this study, the methanolic pyrolysis (methanolysis) of poly(ethylene terephthalate) (PET) taken from waste soft-drink bottles, under microwave irradiation, is proposed as a recycling method with substantial energy saving. The reaction was carried out with methanol with and without the use of zinc acetate as catalyst in a sealed microwave reactor in which the pressure and temperature were controlled and recorded. Experiments under constant temperature or microwave power were carried out at several time intervals. The main product dimethyl-terephthalate was analyzed and identified by FTIR and DSC measurements. It was found that PET depolymerization, is favored by increasing temperature, time and microwave power. High degrees of depolymerization were measured at temperatures near 180 °C and at microwave power higher than 150 W. Most of the degradation was found to occur during the initial 5–10 min. Compared to conventional pyrolysis methods, microwave irradiation during methanolic pyrolysis of PET certainly results in shorter reaction times supporting thus the conclusion that this method is a very beneficial one for the recycling of PET wastes.  相似文献   

7.
Polyethylene terephthalate (PET) fibre waste and disposable soft drink bottle waste were subjected to depolymerization via aminolysis using excess of ethanolamine. The reaction was carried out under non conventional microwave energy in the presence of different simple chemicals as catalysts namely, sodium acetate, sodium bicarbonate and sodium sulphate. After repeated crystallization, pure bis (2-hydroxyethyl) terephthalamide (BHETA) was obtained with very high yields (nearly 90%). It was subjected to characterization by elemental analysis, melting point, FTIR, NMR and DSC. With the use of microwave energy, the process becomes economically viable since high yields of BHETA (>90%) at very low reaction time (4 min) could be obtained with common and cheap chemicals as catalysts.  相似文献   

8.
Dynamic simultaneous thermal analysis was optimized to screen activity of different catalysts for polycondensation of bis-hydroxy ethylene terephthalate (BHET) to polyethylene terephthalate. Reactions were performed by heating BHET to 300 °C at a linear heating rate in 50 μl thermal analysis crucibles under inert gas purging. A sensitive and reproducible screening method was obtained after overcoming of critical problems such as monomer evaporation, catalytic activity of crucible material, and optimization of gas purging, monomer amount in the crucible and heating rate. Under the applied conditions mass transport limitations were absent and the reaction was controlled solely by chemistry. The temperature at which maximum reaction rate occurs was used as an index of catalytic activity. It was obtained from maximum differential scanning calorimetry signal together with the maximum derivative of thermogravimetry signal. Temperature at which the reaction starts was also applied as an activity index. It was obtained from the onset of mass loss. The value of these three indices was smaller for more active catalysts.The optimized method was applied to study the activity of a new polycondensation heterogeneous catalyst based on hydrotalcite. This new catalyst was shown to be much more active than the conventional antimony catalyst under the applied conditions.  相似文献   

9.
本文对微波作用下PET的中性水解解聚反应中原料结晶度的影响进行了研究.  相似文献   

10.
Summary: The tetrabutylorthotitanate (TBOT) was hydrolyzed by H2O produced during the esterification of pure terephthalic acid (PTA) and ethylene glycol (EG), and the bis(2-hydroxyethyl) terephthalate (BHET)/titanium compound nanocomposite was in-situ formed. The effect of TBOT on the esterification and its product property has been investigated. The results show that the butyl alcohol from the hydrolysis of TBOT is almost distilled out with H2O and there has no effect on the chemical structure of BHET caused by the introducing of TBOT. A kind of novel titanium compound is manufactured during the esterification under the existence of TBOT, which shows slice-like morphology from SEM micrographs and special XRD pattern with new diffraction peaks between 2-Θ = 6.9° and 10.2°. It is found that the BHET/titanium compound nanocomposite can act as the catalyst of polymerization of poly(ethylene terephthalate) (PET). The PET resins synthesized by in-situ formed catalyst have almost the same physicochemical properties with the commerced resins and have good spinnability.  相似文献   

11.
配合超临界甲醇解聚聚对苯二甲酸乙二醇酯的工艺开发,采用高效液相色谱法对聚对苯二甲酸二乙酯的超临界甲醇解聚固体产物进行了分离、定性和定量分析。采用反相色谱体系,色谱柱为Zorbax-C8柱,流动相为甲醇-水(70/30,V/V),紫外检测器。该法具有高色谱分辨率、简便、准确、重复性好等特点。  相似文献   

12.
For revealing diethylene glycol (DEG) formation in poly(ethylene terephthalate) (PET) synthesis, this research focused on finding the stage most critical for DEG formation. It is found that the esterification stage was the most critical stage for DEG formation during production of PET through the direct esterification process. In addition, the kinetics of the formation of DEG (ether bond), which is mainly produced from hydroxyl end groups of ethylene glycol (EG) and bis-hydroxyethyl terephthalate (BHET) oligomer, was investigated. The results show that the reactivity of BHET-OH functional group is greater than that of EG-OH functional group in the reaction to produce ether bonds. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 3073–3080, 1998  相似文献   

13.
A solution of NaOH dissolved in ethylene glycol (EG) was effective in the dechlorination of poly(vinyl chloride) (PVC) at atmospheric pressure. The degree of dechlorination increased with increasing temperature, reaching a maximum of 97.8% at 190 °C. The dechlorination proceeded under chemical control and exhibited first-order kinetics with an apparent activation energy of 170 kJ mol−1. The apparent rate constant for dechlorination in 1.0 M NaOH/EG was approximately 150 times greater than that in 1.0 M NaOH/H2O. In addition, dechlorination was faster at atmospheric pressure in NaOH/EG than under high pressure in NaOH/H2O. The dechlorination reaction occurs via a combination of E2 and SN2 mechanisms.  相似文献   

14.
The wet dechlorination treatment of poly(vinylidene chloride) (PVDC) was evaluated at atmospheric pressure in a solution of NaOH in ethylene glycol (EG), as a function of NaOH concentration, temperature, and solvent. Hydroxide ion from NaOH was required for dechlorination with EG acting solely as a solvent. The wet treatment exhibited significantly enhanced dechlorination efficiency over traditional thermal techniques, with a reaction efficiency as high as 92.8% in 1.0 M NaOH at 190 °C. Dechlorination reactions of PVDC in both NaOH/EG and NaOH/H2O were expressed by an apparent first-order reaction. At 190 °C, the apparent rate constant in 1.0 M NaOH/EG was approximately 1.4 times larger than in 1.0 M NaOH/H2O, with an apparent activation energy of 82.8 kJ mol−1, indicating that the reaction proceeded under chemical control. The degree of dechlorination increased with increasing reaction temperature, favouring the elimination of HCl over the hydroxyl substitution of chloride.  相似文献   

15.

Zinc salicylaldimine complex immobilized on silica gel was used as a promising catalyst for the transesterification reaction of dimethyl terephthalate (DMT) and ethylene glycol (EG).The catalyst was characterized by Fourier transform infra‐red spectroscopy (FT‐IR), thermogravimetric analysis (TGA) and atomic absorption spectroscopy (AAS). The product bis‐(2‐hydroxyethyl)terephthalate (BHET)was confirmed by mass and 1H‐NMR studies. In comparison to zinc acetate i.e., homogeneous catalyst, a polymer supported catalyst showed better stability, catalytic activity and ease of separation from the reaction product. The catalyst can be reutilized during successive catalytic cycles.  相似文献   

16.
2,2'-Bis (4H-3, 1-benzoxazin-4-one) (BBON) has been proved to be an effective chainextender for poly (ethylene terephthalate) (PET). In order to study the reaction mechanismand kinetics of chain-extending reaction, β-bishydroxyethylene terephthalate (BHET) wasselected as model compound. The NMR data, IR spectra and number average molecularweight (M_n) of the products obtained from the reaction of BBON and BHET verify thatBBON is a hydroxyl-reactive extender. The mechanism was discussed. Kinetics dataindicate that extending reaction is a second order reaction, and BBON has high reactivity.The activation energy (E_a) was measured.  相似文献   

17.
Chemical recycling of PET waste into hydrophobic textile dyestuffs   总被引:1,自引:0,他引:1  
The paper aims at effective chemical recycling of poly(ethylene terephthalate) (PET) fiber waste into useful products, such as hydrophobic disperse dyes for synthetic textiles. For this, PET fiber waste was glycolytically depolymerized using excess of ethylene glycol in the presence of sodium sulfate as catalyst. The product, pure bis(2-hydroxyethylene terephthalate) (BHET) was obtained with >60% yield by successive recrystallization. In order to synthesize hydrophobic disperse dyes, applicable to synthetic textile fibers, BHET was converted to bis(2-chloroethylene terephthalate), reacted with the p-nitro benzoic acid, reduced and then reacted with bromine and potassium thiocyanate to get benzothiazole derivative. Coupling with N,N-diethylaniline produced a bright yellow disperse dye (Dye A). Similarly, coupling of p-amino benzoic ester with N,N-diethylaniline led to an orange colored disperse dye (Dye B). These dyes were applied onto polyester fabric by conventional method. Results in terms of depth of dyeing, evenness and the performance characteristics were found to be promising.  相似文献   

18.
Poly(ethylene terephthalate) (PET) from an industrial manufacturer was depolymerized by ethylene glycol in the presence of a novel catalyst: ionic liquids. It was found that the purification process of the products in the glycolysis catalyzed by ionic liquids was simpler than that catalyzed by traditional compounds, such as metal acetate. Qualitative analysis showed that the main product in the glycolysis process was the bis(hydroxyethyl) terephthalate (BHET) monomer. Thermal analysis of the glycolysis products was carried out by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The influences of experimental parameters, such as the amount of catalyst, glycolysis time, reaction temperature, and water content in the catalyst on the conversion of PET, selectivity of BHET, and distribution of the products were investigated. Results show that reaction temperature is a critical factor in this process. In addition, a detailed reaction mechanism of the glycolysis of PET was proposed.  相似文献   

19.
IntroductionDimethyl carbonate(DMC) is known to be a novelbuilding block in organic synthesis. As an environmen-tally benign compound and a unique intermediate,DMC has attracted much attention[1,2]. Among the va-rious methods for synthesizing DMC, the tra…  相似文献   

20.
This research discussed the effect of the addition of antimony catalyst on diethylene glycol (DEG) formation in poly(ethylene terephthalate) (PET) synthesis. It was found that antimony catalyst increased DEG formation in the preparation of PET, in particular, during the esterification stage and also during the prepolycondensation stage. To further discuss the effect of antimony catalyst on DEG formation in the preparation of PET, this research also focused on the kinetics of DEG formation during PET synthesis from purified bishydroxyethyl terephthalate (BHET) monomer with antimony catalyst. The rate expression of DEG formation from BHET monomer and antimony catalyst was described. It was found that the activation energy of BHET monomer with antimony catalyst in DEG formation is lower than that of BHET monomer without the addition of catalyst. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1797–1803, 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号