首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of solvent-free ionic silica (SiO2) nanofluids of 12.3–17.3 nm in diameter were synthesized by surface functionalizing nanoscale SiO2 with a charged corona and ionically tethering with oligomeric chains as canopy. The structure and properties of the nanofluids were systematically characterized by Fourier transform infrared (FTIR), differential scanning calorimeter (DSC), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), and rheology tests. The resultant nanofluids with low-molecular-weight oligomeric as canopy are homogeneous, stable yellow-like fluids with no evidence of phase separation at room temperature, while other nanofluids containing high-molecular-weight as canopy behave like a soft glassy, and they exhibit fluidity with still high modulus and viscosity above 60°C. For deeper understanding of the nature of SiO2 nanofluids, the rheological behavior, thermal stability, as well as morphology of SiO2 nanofluids were investigated in details. The flow properties of nanofluids could be easily regulated from soft glassy to free flowing liquids by varying the molecule weight of canopy. Most importantly, the thermal stability, rheological behavior, as well as morphology can be also regulated through varying molecule weight and thickness of canopy, which will guide our future work on synthesis of nanofluids with controllable physical properties.  相似文献   

2.
Magnetic powders based on metallic iron crystallites encapsulated in submicron-sized spherical silica particles have been obtained and investigated. The metallic iron clusters have been produced by the exploding wire method. The silica shells have been prepared via the modified sol-gel Stöber method and the metallic particles have been entrapped by occlusion during the silica powder formation. The entrapped iron particles are partially oxidized due to the nature of the synthetic methods employed. The obtained hybrid materials have been investigated by electron microscopy, X-ray diffraction, magnetic and ζ-potential techniques. Such materials can be employed in such applications as e.g. magnetically-controlled drug vectors or electromagnetic field-shielding.  相似文献   

3.
Polyaniline coated silica/maghemite nanoparticles (PANI/SiO2/γ-Fe2O3 composites) were synthesized by the combination of a sol-gel process and an in-situ polymerization method, in which ferrous and ferric salts as well as tetraethyl orthosilica (TEOS) acted as the precursor for γ-Fe2O3 and silica, respectively. As a result, the SiO2/γ-Fe2O3 particle showed a core-shell structure, with γ-Fe2O3 as the magnetic core and silica as the shell of the particle. The shell thickness can be controlled by changing the TEOS concentration. The PANI/SiO2/γ-Fe2O3 composites revealed a multilayer core-shell structure, where PANI is the outer shell of the composite. The doping level and the conductivity of PANI/SiO2/γ-Fe2O3 composites decreased with increasing the TEOS content due to the presence of the less coated PANI on the SiO2/γ-Fe2O3 core at higher TEOS content. For a SQUID analysis at room temperature, all γ-Fe2O3 containing composites showed a typical superparamagnetic behavior. The saturation magnetization of SiO2/γ-Fe2O3 nanoparticles decreased with increasing the TEOS content due to the increase in silica shell thickness, while the saturation magnetization of PANI/SiO2/γ-Fe2O3 composites also decreased with increasing the TEOS content, which is attributed to the lower conductivity of PANI in the composites at higher TEOS content.  相似文献   

4.
Ca3Co4O9 powder was prepared by a polyacrylamide gel route in this paper. The effect of the processing on microstructure and thermoelectric properties of Ca3Co4O9 ceramics via spark plasma sintering were investigated. Electrical measurement shows that the Seebeck coefficient and conductivity are 170 μV/K and 128 S/cm, respectively, at 700 °C, yielding a power factor value of 3.70 × 10−4 W m−1 K−2 at 700 °C, which is larger than that of Ca3Co4O9 ceramics via solid-state reaction processing. The polyacrylamide gel processing is a fast, cheap, reproducible and easily scaled up chemical route to improve the thermoelectric properties of Ca3Co4O9 ceramics by preparing the homogeneous and pure Ca3Co4O9 phase.  相似文献   

5.
Thermal decomposition studies of the free polyhedral oligomeric silsesquioxane, POSS(h), and when this compound has been impregnated with Cp(2)ZrCl(2) (Cp=eta(5)-C(5)H(5)) or immobilized on SiO(2) were conducted using infrared emission spectroscopy (IES) over a 100-1000 degrees C temperature range and by thermogravimetric analysis (TGA). The organic groups in POSS(h) apparently decompose thermally into Si-CH(3), Si-H and other fragments. Upon impregnation with Cp(2)ZrCl(2), however, a different thermal decomposition pathway was followed and new infrared emission bands appeared in the 1000-900cm(-1) region suggesting the formation of Si-O-Zr moieties. When immobilized on SiO(2) and subjected to thermal decomposition, the POSS(h) compound lost its organic groups and the inorganic structure remaining was incorporated into the SiO(2) framework.  相似文献   

6.
A CF3-containing diamine, 2,2′-thiobis-[4-methyl(2-trifluoromethyl)4-aminophenoxy) phenyl ether] (DA), was successfully synthesized from 2-2′-sulfide-bis-(4-methyl phenol) and 2-chloro-5-nitrobenzotrifluoride. The sulfur containing diimide-diacid (DIDA) was prepared by condensation reaction of diamine DA and trimellitic anhydride. A series of novel organic-soluble polyamide-imides (PAIs) bearing flexible ether and sulfide links, electron-withdrawing trifluoromethyl groups and ortho-phenylene units were synthesized from DIDA, by direct polycondensation with various aromatic diamines in N-methyl-2-pyrrolidone using triphenyl phosphite and pyridine as a condensing agent in the presence of dehydrating agent (LiCl). The polyamide-imides were obtained in high yields and possessed inherent viscosities in the range of 0.42-0.95 dL g−1. All of the polymers were amorphous in nature, showed outstanding solubility and could be easily dissolved in amide-type polar aprotic solvents (e.g., N-methyl-2-pyrrolidone, N,N-dimethylacetamide, and N,N-dimethylformamide) and even dissolved in less polar solvents (e.g., pyridine and tetrahydrofuran). They showed good thermal stability with glass transition temperatures between 195-245 °C, 10% weight loss temperatures in excess of 485 °C, and char yields more than 50% at 700 °C in nitrogen atmosphere. Moreover, these PAIs possessed low refractive indexes (n = 1.57-1.59) and low birefringence (Δ ≈ 0.02) due to the trifluoromethyl pendent groups and thioether bridged ortho-catenated aromatic rings that interrupt chain packing and increase free volume.  相似文献   

7.
通过溶胶-凝胶方法制备了稀土离子Eu3+和Ga3+共掺杂的SiO2材料;利用IR、XRD等研究了材料的结构,结果表明材料属于非晶态,800 ℃退火后样品的主要结构仍为SiO2的网状结构。400 ℃退火的样品在393 nm激发下发射光谱显示了Eu3+的特征发射光谱,产生3条明显谱带,分别是576 nm(5D0-7F  相似文献   

8.
In this study, the reaction conditions of poly-4-[(2-methylphenyl)iminomethyl]phenol (P-2-MPIMP) were studied by using oxidants such as air O2, H2O2 and NaOCl in an aqueous alkaline medium between 50 and 90 °C. The structures of the synthesized monomer and polymer were confirmed by FT-IR, UV-vis, NMR and elemental analysis. The characterization was made by TG-DTA, size exclusion chromatography (SEC) and solubility tests. At the optimum reaction conditions, the yield of poly-4-[(2-methylphenyl)iminomethyl]phenol (P-2-MPIMP) was found to be 20% (for air O2 oxidant), 33% (for H2O2 oxidant), and 74% (for NaOCl oxidant). According to the SEC analysis, the number-average molecular weight (Mn), weight-average molecular weight (Mw) and polydispersity index (PDI) values of P-2-MPIMP were found to be 3300, 4100 g mol−1 and 1.242, using H2O2, and 4550, 5150 g mol−1and 1.132, using air O2 and 5300, 5850 g mol−1 and 1.104, using NaOCl, respectively. According to TG analysis, the weight losses of 4-[(2-methylphenyl)iminomethyl]phenol (2-MPIMP) and P-2-MPIMP were found to be between 75.29% and 48.17% at 1000 °C, respectively. P-2-MPIMP was shown to have a higher stability against thermal decomposition. Also, electrical conductivity of the P-2-MPIMP was measured, showing that the polymer is a typical semiconductor. Electrochemically, the highest occupied molecular orbital (HOMO), the lowest unoccupied molecular orbital (LUMO) and electrochemical energy gaps ( of 2-MPIMP and P-2-MPIMP were found to be −6.01, −6.03; −2.63, −2.82; 3.38 and 3.21 eV, respectively. According to UV-vis measurements, the optical band gap (Eg) of 2-MPIMP and P-2-MPIMP was found to be 3.40 and 2.97 eV, respectively.  相似文献   

9.
A complex of [Co(H2SIP)(Phen)(H2O)3] ? H2O (H2SIP = 5-sulfoisophthalic anion, Phen = 1,10-phenanthroline) has been synthesized by hydrothermal reaction. Crystal structure determination revealed that the complex crystallizes in the monoclinic space group P2(1)/c, in which Co(II) is distorted octahedral coordinating with one carboxylate sulfonate ligand, one phen, and three coordinated waters. Molecules of [Co(H2SIP)(Phen)(H2O)3] ? H2O are connected to form a 3-D structure by intermolecular hydrogen bonds and π–π stacking interactions. IR spectra, UV-Vis spectra, and magnetic susceptibilities have been analyzed to obtain values of the ligand field and magnetic parameters: Α = 1.33, λ = ?102.3 cm?1, κ = 0.96, and Δ = 252.2 cm?1.  相似文献   

10.
The reaction of bis(salicylidene)-m-phenylenediamine with zinc(II) ion affords a 2?:?2 dinuclear zinc(II) complex formulated as [Zn2(L1)2]. A similar 2?:?2 dinuclear zinc(II) complex, [Zn2(L2)2], can be obtained by reaction of bis(salicylidene)-m-aminobenzylamine with zinc(II) ion. These two dinuclear complexes slightly differ in their crystal structures, especially coordination environments around the zinc(II) centers, depending on the dissimilar flexibilities of the two ligands. The differences between the two complexes are reflected in their diffuse reflectance and photoluminescence behaviors.  相似文献   

11.
12.
In the Ca-Co-Zn-O system, we have determined the tie-line relationships and the thermoelectric properties, solid solution limits, and structures of two low-dimensional cobaltite series, Ca3(Co, Zn)4O9−z and Ca3(Co,Zn)2O6−z at 885 °C in air. In Ca3(Co,Zn)4O9−z, which has a misfit layered structure, Zn was found to substitute in the Co site to a limit of Ca3(Co3.8Zn0.2)O9−z. The compound Ca3(Co,Zn)2O6−z (n=1 member of the homologous series, Can+2(Co,Zn)n(Co,Zn)′O3n+3−z) consists of one-dimensional parallel (Co,Zn)2O66− chains that are built from successive alternating face-sharing (Co,Zn)O6 trigonal prisms and ‘n’ units of (Co,Zn)O6 octahedra along the hexagonal c-axis. Zn substitutes in the Co site of Ca3Co2O6 to a small amount of approximately Ca3(Co1.95Zn0.05)O6−z. In the ZnO-CoOz system, Zn substitutes in the tetrahedral Co site of Co3O4 to the maximum amount of (Co2.49Zn0.51)O4−z and Co substitutes in the Zn site of ZnO to (Zn0.94Co0.06)O. The crystal structures of (Co2.7Zn0.3)O4−z, (Zn0.94Co0.06)O, and Ca3(Co1.95 Zn0.05)O6−z are described. Despite the Ca3(Co, Zn)2O6−z series having reasonably high Seebeck coefficients and relatively low thermal conductivity, the electrical resistivity values of its members are too high to achieve high figure of merit, ZT.  相似文献   

13.
A series of α-Fe2O3/FeOOH nanostructures with different morphologies have successfully been synthesized based on K4[Fe(CN)6] at 140 °C by a novel hydrothermal method. The morphology and phase of α-Fe2O3/FeOOH can be controlled by adjusting the reaction time. UV–vis absorption spectrum, X-ray powder diffraction, and transmission electron microscopy analyses were used to characterize the resulting products. A detailed, rational mechanism is proposed for the formation of α-Fe2O3/FeOOH nanostructures. The potential applications of the as-synthesized α-Fe2O3/FeOOH nanoparticles with different morphologies on photocatalytic decomposition of salicylic acid were also investigated.  相似文献   

14.
Polycrystalline samples of the Lu1−xLaxMn2O5 solid solution system were synthesized under moderate conditions for compositions with x up to 0.815. Due to the large difference in ionic size between Lu3+ and La3+, significant changes in lattice parameters and severe lattice strains are present in the solid solution. This in turn leads to the composition dependent thermal stability and magnetic properties. It is found that the solid solution samples with x≤0.487 decompose at a single well defined temperature, while those with x≥0.634 decompose over a temperature range with the formation of intermediate phases. For the samples with x≤0.487, the primary magnetic transition occurs below 40 K, similar to LuMn2O5 and other individual RMn2O5 (R=Bi, Y, and rare earth) compounds. In contrast, a magnetic phase with a 200 K onset transition temperature is dominant in the samples with x≥0.634.  相似文献   

15.
Physicochemical and catalytic properties of compositions Fe(Ce)–Mn–O/support (gamma-, theta-, alpha-Al2O3, SiO2 as the support) and Pt/CeO2/theta-Al2O3 for oxidation of soot were characterized. It was established that the phase composition of the initial catalysts depended mainly on the nature of the active component and preparation conditions. Non-isothermal treatment of the soot–catalyst compositions at the temperature up to 1000 °C resulted in a change in the phase composition depending mainly on the final treatment temperature. The catalyst surface area was determined by the support nature. It was established that catalyst activities for oxidation of soot are determined by both catalyst nature and composition of gas mixture. The process of the soot oxidation is thought to involve oxygen from the catalyst surface. The higher proportion of weakly bound surface oxygen, the higher was the catalyst activity. An increase in the oxygen concentration from 5% O2/N2 to 15% O2/N2 is shown to lead to a decrease of the temperature of the soot oxidation. The influence of the oxygen concentration on the process of soot oxidation becomes weaker in the presence of water vapor. Results showed that the presence of NO in the gas mixture favors a decrease in the oxidation temperature of the soot, the higher being the nitrogen oxide concentration, the more pronounced effect. Introduction of SO2 in amount of 50 ppm in the gas mixture has no noticeable effect on the process of the soot oxidation. Among the catalysts under study, Fe–Mn–K–O/gamma-Al2O3 is most effective to oxidation of the soot at otherwise identical conditions.  相似文献   

16.
Using Na2CO3-H3BO3-NaF as fluxes, transparent RE:Na3La9O3(BO3)8 (abbr. RE:NLBO, RE=Er, Yb) crystals have been grown by the top seed solution growth (TSSG) method. The X-ray powder diffraction analysis shows that the RE:NLBO crystals have the same structure with NLBO. The element contents were determined by molar to be 0.64% Er3+ in Er:NLBO, 2.70% Yb3+ in Yb:NLBO, respectively. The polarized absorption spectra of RE:NLBO have been measured at room temperature and show that both Er:NLBO and Yb:NLBO have a strong absorption bands near 980 nm with wide FWHM (Full Wave at Half Maximum) (21 nm for Er:NLBO and 25 nm for Yb:NLBO). Fluorescence spectra have been recorded. Yb:NLBO has the emission peaks at 985 nm, 1028 nm and 1079 nm and the emission peak of Er:NLBO is at 1536 nm. Spectral parameters have been calculated by the Judd-Ofelt theory for Er:NLBO and the reciprocity method for Yb:NLBO, respectively. The calculated values show that Er:NLBO is a candidate of 1.55 μm laser crystals and Yb:NLBO is a candidate for self-frequency doubling crystal.  相似文献   

17.
A series of six seven-coordinate pentagonal-bipyramidal (PBP) erbium complexes, with acyclic pentadentate [N3O2] Schiff-base ligands, 2,6-diacetylpyridine bis-(4-methoxybenzoylhydrazone) [H2DAPMBH], or 2,6-diacethylpyridine bis(salicylhydrazone) [H4DAPS], and various apical ligands in different charge states were synthesized: [Er(DAPMBH)(C2H5OH)Cl] (1); [Er(DAPMBH)(H2O)Cl]·2C2H5OH (2); [Er(DAPMBH)(CH3OH)Cl] (3); [Er(DAPMBH)(CH3OH)(N3)] (4); [(Et3H)N]+[Er(H2DAPS)Cl2] (5); and [(Et3H)N]+[Y0.95Er0.05(H2DAPS)Cl2] (6). The physicochemical properties, crystal structures, and the DC and AC magnetic properties of 1–6 were studied. The AC magnetic measurements revealed that most of Compounds 1–6 are field-induced single-molecule magnets, with estimated magnetization energy barriers, Ueff ≈ 16–28 K. The experimental study of the magnetic properties was complemented by theoretical analysis based on ab initio and crystal field calculations. An experimental and theoretical study of the magnetism of 1–6 shows the subtle impact of the type and charge state of the axial ligands on the SMM properties of these complexes.  相似文献   

18.
Violet crystals of [Cu(en)2][Pt(CN)4] and blue crystals of [Cu(dmen)2][Pt(CN)4] were crystallized from the water-methanol solution containing CuCl2·2H2O, ethylenediamine (en) or N,N-dimethylethylenediamine (dmen) and K2[Pt(CN)4]·3H2O. Both compounds were characterized using elemental analysis, infrared and UV-VIS spectroscopy, magnetic measurements, specific heat measurements and thermal analysis. X-ray structure analysis revealed chain-like structure in both compounds. The covalent chains are built of Cu(II) ions linked by [Pt(CN)4]2− anions in the [111] and [101] direction, respectively. The Cu(II) atoms are hexacoordinated by four nitrogen atoms in the equatorial plane from two molecules of bidentate ligands L with average Cu-N distance of 2.022(2) and 2.049(4) Å, respectively. Axial positions are occupied by two nitrogen atoms from bridging [Pt(CN)4]2− anions at longer Cu-N distance of 2.537(2) and 2.600(5) Å, respectively. Both materials are characterized by the presence of weak antiferromagnetic exchange coupling. Despite the one-dimensional (1D) character of the structure, the analysis of magnetic properties and specific heat at very low temperatures shows that [Cu(en)2][Pt(CN)4] behaves as two-dimensional (2D) spatially anisotropic square lattice Heisenberg magnet, while more pronounced influence of interlayer coupling is observed in [Cu(dmen)2][Pt(CN)4].  相似文献   

19.
The synthesis, structural analysis, spectroscopic studies, susceptibility and specific-heat measurements of {[Cu(bmen)2][Pt(CN)4]}n (bmen=N,N′-dimethylethylenediamine) are presented. X-ray crystal-structure analysis revealed that the [Pt(CN)4]2− building blocks are combined with [Cu(bmen)2]2+ units to form a chain-like structure along the a axis. The Cu(II) atoms are hexacoordinated by four nitrogen atoms in the equatorial plane belonging to two molecules of bidentate bmen ligands with average Cu-N distance of 2.043(18) Å. The axial positions are occupied by two nitrogen atoms from bridging [Pt(CN)4]2− anions at a longer axial Cu-N distance of 2.490(4) Å. The compound is characterized by the presence of a weak antiferromagnetic exchange coupling J/kB=0.6 K. Despite the one-dimensional (1D) character of the structure, the analysis of the magnetic properties and specific heat at very low temperatures shows that [Cu(bmen)2][Pt(CN)4] behaves as a two-dimensional (2D) square-lattice Heisenberg magnet with weak interlayer coupling.  相似文献   

20.
Two series of related donor-acceptor conjugated heterocyclic azo dyes based on the thienylpyrrole system, functionalized with benzothiazol-2-yl (5-6) or benzothiazol-6-yl acceptor groups (7) through an NN bridge, have been synthesized by azo coupling using 1-alkyl(aryl)thienylpyrroles (1) and benzothiazolyl diazonium salts (2-4) as coupling components. Their optical (linear and first hyperpolarizability), electrochemical, and thermal properties have been examined. Optimized ground-state molecular geometries and estimates of the lowest energy single electron vertical excitation energies in dioxane solutions were obtained using density functional theory (DFT) at the B3LYP/6-31+G(d,p) level. Hyper-Rayleigh scattering (HRS) in dioxane solutions using a fundamental wavelength of 1064 nm was employed to evaluate their second-order nonlinear optical properties. Of these systems, the benzothiazol-2-yl-diazenes 5-6 exhibit the largest first hyperpolarizabilities (β=460-660×10−30 esu, T convention) compared to benzothiazol-6-yl-diazenes 7 (β=360-485×10−30 esu, T convention). Good to excellent thermal stabilities were also obtained for all azo dyes (235-317 °C). This multidisciplinary study showed that modulation of the optical and electronic properties can be achieved by introduction of the benzothiazole acceptor group in the thienylpyrrole system through position 2 or 6 of the benzothiazole heterocycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号