首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Liquid electrolytes used in lithium-ion batteries suffer from leakage,flammability,and lithium dendrites,making polymer electrolyte a potential alternative.Herein,a series of ABA triblock copolymers(ABA-x)containing a mesogen-jacketed liquid crystalline polymer(MJLCP)with a polynorbornene backbone as segment A and a second polynorbornene-based polymer having poly(ethylene oxide)(PEO)side chains as segment B were synthesized through tandem ring-opening metathesis polymerizations.The block copolymers can self-assemble into ordered morphologies at 200℃.After doping of lithium salts and ionic liquid(IL),ABA-x self-assembles into cylindrical structures.The MJLCP segments with a high glass transition temperature and a stable liquid crystalline phase serve as physical crosslinking points,which significantly improve the mechanical performance of the polymer electrolytes.The ionic conductivity of ABA-x/lithium salt/IL is as high as 10-3 S·cm-1 at ambient temperature owing to the high IL uptake and the continuous phase of conducting PEO domains.The relationship between ionic conductivity and temperature fits the Vogel-Tamman-Fulcher(VTF)equation.In addition,the electrolyte films are flame retardant owing to the addition of IL.The polymer electrolytes with good safety and high ambient-temperature ionic conductivity developed in this work are potentially useful in solid lithium-ion batteries.  相似文献   

2.
红外光谱研究PEO基离子液体聚合物电解质   总被引:1,自引:0,他引:1  
以聚氧化乙烯(PEO)为聚合物基体, 双三氟甲基磺酸亚酰胺锂(LiTFSI)为锂盐, 加入不同量的离子液体(BMIMPF6)为增塑剂, 制备离子液体聚合物电解质. 运用发射FTIR光谱技术实时监测所制备聚合物电解质的结构随温度的变化. 结合FTIR透射光谱\, SEM和XRD的研究结果分析了离子液体对离子电导率的影响, 并初步提出离子导电增强机制.  相似文献   

3.
Composite polymer electrolytes based on poly(ethylene oxide)-polysiloxane/l-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide/organomontmorillonite(PEO-PDMS/1L/OMMT) were prepared and characterized.Addition of both an ionic liquid and OMMT to the polymer base of PEO-PDMS resulted in an increase in ionic conductivity.At room temperature,the ionic conductivity of sample PPB100-OMMT4 was 2.19×10~3 S/cm.The composite polymer electrolyte also exhibited high thermal and electrochemical stability and may potentially be applied in lithium batteries.  相似文献   

4.
李雪  龚正良 《电化学》2020,26(3):338
锂硫电池由于具有高的理论比能量引起了广泛关注,然而传统液态锂硫电池由于多硫化物的“穿梭效应”以及安全问题而限制了其应用,全固态锂硫电池可显著提高电池安全性能并有望解决多硫化物的穿梭问题. 本文采用传统的溶液浇铸法制备了具有不同的[EO]/[Li+]的PEO-LiTFSI聚合物电解质,并将其应用于锂硫电池. 研究发现,虽然[EO]/[Li+] = 8的聚合物电解质具有更高的离子电导率,但是[EO]/[Li+] = 20的电解质与金属锂负极间的界面阻抗更低,界面稳定性更好. Li|PEO-LiTFSI([EO]/[Li+]=20)|Li对称电池在60 °C,电流密度为0.1 mA·cm-2时可稳定循环超过300 h,而Li|PEO-LiTFSI ([EO]/[Li+]=8)|Li对称电池循环75 h就出现了短路现象. 基于PEO-LiTFSI([EO]/[Li+]=20)电解质的锂硫电池首圈放电比容量为934 mAh·g-1,循环16圈后放电比容量为917 mAh·g-1以上. 而基于PEO-LiTFSI ([EO]/[Li+]=8)电解质的锂硫电池,由于与锂负极较低的界面稳定性不能够正常循环,首圈就出现了严重过充现象.  相似文献   

5.
液态锂离子电池由于采用易泄露、易挥发、易燃烧的碳酸酯有机溶剂,在高温或极端条件下使用时,存在极大的安全隐患.使用固态电解质替代液态电解液,可以从根本上避免此类安全问题的发生,与此同时还可以大幅度提升固态锂电池的能量密度.固态电解质又分为无机固态电解质和聚合物固态电解质2大类.无机固态电解质能够在宽的温度范围内保持化学稳定性,并且电化学窗口较宽,机械强度更高,室温离子电导率较高,但脆性较大,柔韧性差,制备工艺复杂,成本较高.聚合物固态电解质,室温离子电导率偏低,难以满足室温锂离子电池的应用,但其加工成型容易,形状可变.比较而言,固态聚合物电解质,更适宜大规模生产,离产业化相对更近.固态聚合物电解质中研究较多的是聚醚基固态聚合物电解质(如聚环氧乙烷和聚环氧丙烷),但其缺点是室温离子电导率低,需要对其改性或进一步开发综合性能更加优异的其他固态聚合物电解质.聚碳酸酯基固态聚合物电解质由于其特殊的分子结构(含有强极性碳酸酯基团)以及高介电常数,可以有效减弱阴阳离子间的相互作用,提高载流子数量,从而提高离子电导率,因此被认为是一类非常有前途的固态聚合物电解质体系.基于此,本文重点综述了最近研究热点的聚碳酸酯基固态聚合物电解质,包括聚(三亚甲基碳酸酯)体系、聚(碳酸丙烯酯)体系、聚(碳酸乙烯酯)体系和聚(碳酸亚乙烯酯)体系等,并详细阐述了上述每种聚碳酸酯基固态聚合物电解质的制备、电化学性能、优缺点及改性手段,归纳出其离子配位-解配位过程和离子扩散机制,还对聚碳酸酯基固态聚合物电解质的未来发展方向和研究趋势望进行了预测和展望.  相似文献   

6.
固态聚合物电解质被认为是解决传统液态锂金属电池安全隐患和循环性能的关键材料,但仍然存在离子电导率低,界面兼容性差等问题。近年来,基于无机填料与聚合物电解质的高锂离子电导的有机-无机复合电解质备受关注。根据渗流理论,有机-无机界面被认为是复合电解质离子电导率改善的主要原因。因此,设计与优化有机-无机渗流界面对提高复合电解质离子电导率具有重要意义。本文从渗流结构的设计出发,综述了不同维度结构的无机填料用于高锂离子电导的有机-无机复合电解质的研究进展,并对比分析了不同渗流结构的优缺点。基于上述评述,展望了有机-无机复合电解质的未来发展趋势和方向。  相似文献   

7.
通过XRD ,DSC ,FT IR和SEM等方法对PEO LiClO4 ZSM5复合电解质进行了研究 ,结果表明ZSM 5可以有效地降低PEO LiClO4 ZSM5复合电解质中PEO的结晶度和玻璃化温度 ,从而提高其低温区域的离子电导率 .温度高于PEO的结晶熔融温度后 ,复合电解质离子电导率的提高则是由于在ZSM 5表面形成了有利于Li离子迁移的导电通道所引起的 .较高的离子电导率和较宽的电化学稳定窗口表明PEO LiClO4 ZSM5复合电解质在全固态锂离子二次电池领域具有良好的应用前景 .  相似文献   

8.
In the present work, nanofibrous composite polymer electrolytes consist of polyethylene oxide (PEO), ethylene carbonate (EC), propylene carbonate (PC), lithium perchlorate (LiClO4), and titanium dioxide (TiO2) were designed using response surface method (RSM) and synthesized via an electrospinning process. Morphological properties of the as‐prepared electrolytes were studied using SEM. FTIR spectroscopy was conducted to investigate the interaction between the components of the composites. The highest room temperature ionic conductivity of 0.085 mS.cm?1 was obtained with incorporation of 0.175 wt. % TiO2 filler into the plasticized nanofibrous electrolyte by EC. Moreover, the optimum structure was compared with a film polymeric electrolyte prepared using a film casting method. Despite more amorphous structure of the film electrolyte, the nanofibrous electrolyte showed superior ion conductivity possibly due to the highly porous structure of the nanofibrous membranes. Furthermore, the mechanical properties illustrated slight deterioration with incorporation of the TiO2 nanoparticles into the electrospun electrolytes. This investigation indicated the great potential of the electrospun structures as all‐solid‐state polymeric electrolytes applicable in lithium ion batteries.  相似文献   

9.
PEO/LiClO_4纳米SiO_2复合聚合物电解质的电化学研究   总被引:8,自引:0,他引:8  
将实验室制备的纳米二氧化硅和市售纳米二氧化硅粉末与PEO LiClO4复合 ,制得了复合PEO电解质 .它们的室温离子电导率可比未复合的PEO电解质提高 1~ 2个数量级 ,最高可以达到 1 2 4× 10 - 5S cm .离子电导率的提高有两方面的原因 :一是无机二氧化硅粉末的加入抑制了PEO的结晶 ,是二氧化硅粉末和聚合物电解质之间形成的界面对电导率的提高也有一定的作用 .在进一步加入PC EC(碳酸丙烯酯 碳酸乙烯酯 )混合增塑剂后制得的复合凝胶PEO电解质 ,可使室温离子电导率再提高 2个数量 ,达到 2× 10 - 3 S cm .用这种复合凝胶PEO电解质组装了Li|compositegelelectrolyte|Li半电池 ,并测量了该半电池的交流阻抗谱图随组装后保持时间的变化 ,实验观察到在保持时间为 144h以内钝化膜的交流阻抗迅速增大 ,但在随后的时间内逐渐趋于平稳 ,表明二氧化硅粉末的加入可以有效地抑制钝化膜的生长  相似文献   

10.
Self‐standing films of (meth)acrylate‐based polymer gel electrolytes with high ionic liquid content (80 wt %) were prepared by in situ thermally or photo induced radical copolymerization of mono‐functional and di‐functional (meth)acrylates in an ionic liquid in the presence/absence of a lithium salt. Their ionic conductivity, thermal property, mechanical property, and flammability were examined. 1‐Ethyl‐3‐methylimidazolium bis(trifluoromethanesulfonyl)imide (EMImTFSI) or 1‐ethyl‐3‐methylimidazolium bis(fluorosulfonyl)imide (EMImFSI) was used as the ionic liquid, and lithium bis(trifluoromethanesulfonyl)imide LiTFSI was used as the lithium salt. The obtained films were semitransparent and flexible with good to moderate thermal stability and mechanical strength with high ionic conductivity. The EMImFSI‐containing gel electrolytes showed higher ionic conductivity than the corresponding EMImTFSI‐containing gel electrolytes. The ionic conductivity in the acrylate‐based gel electrolytes was slightly increased by addition of lithium salt, while that in the corresponding methacrylate‐based electrolytes was decreased significantly. The flame test showed the ionic liquid containing networked polymer gel electrolytes to have low if any flammability and was therefore confirmed to be highly safe. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

11.
采用聚氧化乙烯(PEO)、丁二腈和高氯酸锂(LiClO4)的复合电解质体系, 制备了一系列不同配比的PEO/SN/LiClO4复合电解质, 对其室温电性能和相态结构进行了表征, 并探讨了相态结构对室温电导率的影响.  相似文献   

12.
Replacement of volatile and combustible electrolytes in conventional lithium batteries is desirable for two reasons: safety concerns and increase in specific energy. In this work we consider the use of an ionic organic plastic crystal material (IOPC), N-ethyl-N-methylpyrrolidinium tetrafluoroborate, [C2mpyr][BF(4)], as a solid-state electrolyte for lithium battery applications. The effect of inclusion of 1 to 33 mol% lithium tetrafluoroborate, LiBF(4), into [C2mpyr][BF(4)] has been investigated over a wide temperature range by differential scanning calorimetry (DSC), impedance spectroscopy, cyclic voltammetry and cycling of full Li|LiFePO(4) batteries. The increases in ionic conductivity by orders of magnitude observed at higher temperature are most likely associated with an increase in Li ion mobility in the highest plastic phase. At concentrations >5 mol% LiBF(4) the ionic conductivity of these solid-state composites is comparable to the ionic conductivity of room temperature ionic liquids. Galvanostatic cycling of Li|Li symmetrical cells showed that the reversibility of the lithium metal redox reaction at the interface of this plastic crystal electrolyte is sufficient for lithium battery applications. For the first time we demonstrate an all solid state lithium battery incorporating solid electrolytes based on IOPC as opposed to conventional flammable organic solvents.  相似文献   

13.
Polymer electrolyte (PE) has been emerging as a promising alternative to liquid electrolytes due to the unique advantages such as excellent flexibility and processability, high chemical and thermal stability, and low risk of leakage and combustion, especially for lithium-ion batteries (LIBs). Even though abundant attempts focusing on polymer chemistries have been made, the inadequate capacity of lithium-ion transport via segmental motion still cannot provide satisfying room temperature ionic conductivity and lithium-ion transference number. In addition, safety concerns and short lifespan resulted from the brittle and incompatible interface between the electrode and polymer materials also hinder the commercialization of PEs-based LIBs. Hence, for the above performance defects and interface issues, this review provides an overview of polymer electrolytes from the conductivity improvement, polymer selection and mechanical strength enhancement for protrusion suppressing. The improvement of conductivity specifically includes structure modification of poly(ethylene oxide) (PEO) host and novel electrolyte matrix beyond PEO, while the section of interface regulation mainly involves dendrite-inhibited polymers, mechanical strengthening, and in situ polymerization. Finally, perspectives and challenges are pointed out in the development of polymer electrolytes with both excellent electrochemical performance and safety for LIBs.  相似文献   

14.
Significant safety problems and poor cyclic stability of conventional lithium-ion batteries, which based on organic liquid electrolytes, hinder their practical application, while all-solid-state batteries (ASSBs) are considered the most promising candidates to replace traditional lithium-ion batteries. As a critical component of ASSBs, solid-state electrolytes play an essential role in ion transport properties and stability. At present, the solid garnet electrolyte is considered as one of the most promising electrolytes because of its excellent performance. However, it still faces many challenges in ionic conductivity, air stability, electrode/electrolyte interface, and lithium dendrites. Therefore, this review is concerned about the up-to-date progress and challenges which will greatly influence the large-scale application of solid garnet electrolytes. Firstly, various ways to improve the ionic conductivity of solid garnet electrolytes are comprehensively summarized. Then, the stability of solid garnet electrolytes in the air is carefully discussed. Secondly, the latest progress in interface engineering between anode/cathode and solid garnet electrolytes treated by different methods is reported. The formation mechanism and influencing factors of lithium dendrites in the solid garnet electrolyte are systematically focused on. Finally, the development and innovation of composite solid garnet electrolytes and 3D garnet electrolytes are summarized in detail. Some important characterization techniques for studying the aforementioned problems are also summarized. Based on the current development of solid garnet electrolytes and solid-state batteries, further challenges and perspectives are presented.  相似文献   

15.
离子导体嵌段共聚物电解质作为一种固态锂电池导离子材料引起了人们的广泛关注。嵌段共聚物的自组装行为为设计微观尺寸有序结构提供了一种可能。这种有序纳米结构既保证聚合物电解质良好的机械性能,同时又拥有与其它聚合物电解质相当的离子电导率,为进一步组装高性能、易加工的锂电池器件提供了一种可能。本文综述了聚氧化乙烯型嵌段共聚物和单离子型嵌段共聚物,并总结了近期嵌段共聚物电解质的形貌影响离子电导率的实验研究结果,最后评述了嵌段共聚物电解质面临的挑战,并对未来研究进行了展望。  相似文献   

16.
Polymer electrolytes are of tremendous importance for applications in modern lithium‐ion (Li+‐ion) batteries due to their satisfactory ion conductivity, low toxicity, reduced flammability, as well as good mechanical and thermal stability. In this study, the Li+‐ion conductivity of well‐defined poly(ethylene oxide) (PEO) networks synthesized via copper(I)‐catalyzed azide–alkyne cycloaddition is investigated by electrochemical impedance spectroscopy after addition of different lithium salts. The ion conductivity of the network electrolytes increases with increasing molar mass of the PEO chains between the junction points which is completely opposite to the behavior of their respective uncrosslinked linear precursors. Obviously, this effect is directly related to the segmental mobility of the PEO chains. Furthermore, the ion conductivity of the network electrolytes under investigation increases also with increasing size of the anion of the added lithium salt due to a weaker anti‐plasticizing effect of the more bulky anions. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 21–28  相似文献   

17.
《中国化学快报》2021,32(9):2659-2678
In comparison with lithium-ion batteries (LIBs) with liquid electrolytes, all-solid-state lithium batteries (ASSLBs) have been considered as promising systems for future energy storage due to their safety and high energy density. As the pivotal component used in ASSLBs, composite solid polymer electrolytes (CSPEs), derived from the incorporation of inorganic fillers into solid polymer electrolytes (SPEs), exhibit higher ionic conductivity, better mechanical strength, and superior thermal/electrochemical stability compared to the single-component SPEs, which can significantly promote the electrochemical performance of ASSLBs. Herein, the recent advances of CSPEs applied in ASSLBs are presented. The effects of the category, morphology and concentration of inorganic fillers on the ionic conductivity, mechanical strength, electrochemical window, interfacial stability and possible Li+ transfer mechanism of CSPEs will be systematically discussed. Finally, the challenges and perspectives are proposed for the future development of high-performance CSPEs and ASSLBs.  相似文献   

18.
Solid polymer electrolytes (SPEs) with high ionic conductivity and acceptable mechanical properties are of particular interest for increasing the performance of batteries. In the present work, SPEs based on poly(ethylene oxide)/poly (vinyl pyrrolidone) (PEO/PVP) with various lithium salts were prepared by solvent casting technique. The amorphous nature of the polymer-salt complex was studied by X-ray diffraction analysis. The complexation of the prepared electrolytes was confirmed by Fourier transform infrared analysis. Ionic conductivity as a function of frequency was studied at various temperatures in the range of 303–353 K. The maximum ionic conductivity value was found to be 1.08 × 10?5 S/cm for the film containing lithium bis trifluoromethane sulfonoimide (LiN[CF3SO2]2) at room temperature and the temperature dependent ionic conductivity values seem to obey Vogel-Tamman-Fulcher relation. Thermogravimetry was used to ascertain the thermal stability of the electrolytes. Photoluminescence measurements demonstrated that the sample having maximum ionic conductivity shows the minimum luminescence intensity. Ultra violet-visible analysis reveals that the values of the band gap energies were changed with the addition of various lithium salts. Porosity of the sample containing lithium bis trifluoromethane sulfonoimide (LiN[CF3SO2]2) was studied by Atomic force microscope.  相似文献   

19.
Room temperature ionic liquid (DMOImTf) based upon 2,3-dimethyl-1-octylimidazolium cation and trifluoromethanesulfonate or triflate (CF(3)SO(3))(-) anion has been synthesized and shows conductivity of 5.68 mS/cm and viscosity of 26.4 cP at 25 degrees C. Ion conducting polymer electrolytes based on polymers (poly(ethylene oxide) (PEO) and polyvinylidenefluoride-co-hexafluoropropylene (PVdF-HFP)) and ionic liquid (DMOImTf) were prepared in film form by the casting technique. The conductivity of polymer electrolytes containing 0.5 M LiCF(3)SO(3) in PEO:DMOImTf taken in equal weight ratio increases with the addition of propylene carbonate (PC) while its mechanical stability improved by dispersing nanosize fumed silica. However, polymer electrolytes containing PVdF-HFP and ionic liquid show a high value of conductivity (10(-4)-10(-3) S/cm) alongwith better mechanical stability.  相似文献   

20.
《印度化学会志》2023,100(4):100959
The polymer-ceramic composite electrolytes have great application potential for next-generation solid state lithium batteries, as they have the merits to eliminate the problem of liquid organic electrolytes and enhancing chemical/electrochemical stability. However, polymer-ceramic composite electrolytes show poor ionic conductivity, which greatly hinders their practical applications. In this work, the addition of plasticizer ethylene carbonate (EC) into polymer-ceramic composite electrolyte for lithium batteries effectively promotes the ionic conductivity. A high ionic conductivity can be attained by adding 40 wt% EC to the polyethylene oxide (PEO)/polyvinylidene fluoride (PVDF)-Li7La3Zr2O12 (LLZO) based polymer-ceramic composite electrolytes, which is 2.64 × 10−4 S cm−1 (tested at room temperature). Furthermore, the cell assembled with lithium metal anode, this composite electrolyte, and LiFePO4 cathode can work more than 80 cycles at room temperature (tested at 0.2 C). The battery delivers a high reversible specific capacity after 89 cycles, which is 119 mAh g−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号