首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
The influence of ionic strength and protein concentration on the transport of bovine serum albumin (BSA), ovalbumin and lysozyme through chitosan (CHI)/polystyrenesulfonate (PSS) multilayers on polyether sulfone supports are investigated under ultrafiltration conditions. The percentage transmission and flux of BSA, ovalbumin and lysozyme were found to increase with increase in salt concentration in the protein. The percentage transmission of BSA through 9 bilayer membrane was found to increase from 5.3 to 115.6 when the salt concentration was varied from 0 to 1 M. It was observed that 0.1 M NaCl in BSA solution is capable of permeating all the BSA. When the salt concentration in BSA was further increased, a negative solute rejection (solute enrichment in permeate) was found to take place. With 9 bilayer membrane, the percentage transmission of ovalbumin was found to increase from 23.3 to 125.8 when the salt concentration in protein was increased from 0 to 0.05 M. The effect of protein concentration on protein transport is studied taking BSA as a model protein. BSA was rejected by the multilayer membrane at all the studied concentrations (0.25, 0.5, 1 and 2 mg/ml). With increase in feed concentration, maximum rejection of protein occurred at higher number of CHI/PSS bilayers. BSA solution flux was found to decrease with an increase in BSA concentration. This study indicates that it is possible to fine tune the transport properties of proteins through multilayer membranes by varying the concentration and ionic strength of protein solutions.  相似文献   

2.
In recent years, the layer-by-layer (LBL) self-assembly of polyelectrolyte has attracted much attention for the preparation of nanofiltration (NF) membranes. However, most researchers focused on the homopolymers, few studied on the copolymers for the preparation of NF membranes. In the present work, a series of nanofiltration membranes were prepared by dynamic self-assembly of a copolymer polyelectrolyte containing both weakly and strongly ionized groups, poly (4-styrenesulfonic acid-co-maleic acid) sodium salt (PSSMA), with poly (allylamine hydrochloride) (PAH) and poly (styrenesulfonic acid sodium salt) (PSS) on the modified polyacrylonitrile (PAN) ultra-filtration membranes. The effects of substrate, deposition pH, SS/MA ratio in PSSMA, concentration of the PSSMA and bilayer number on the properties of the NF membranes were investigated. The results indicated that the performances of the NF membranes prepared by dynamic self-assembly process were superior to those prepared by the static self-assembly process. The membranes terminated with PSSMA were negatively charged. Due to the changes of charge density and conformation of PSSMA in different pH conditions, the [PAH/PSS]1PAH/PSSMA membrane prepared at pH 2.5 showed higher Na2SO4 rejection and larger flux than those of the membrane prepared at pH 5.7. The NF membrane [PAH/PSS]1PAH/PSSMA composed of only two bilayers exhibited 91.4% Na2SO4 rejection and allowed solution flux of 28.6 L/m2 h at 0.2 MPa. The solution flux increased to 106.6 L/m2 h at 0.8 MPa, meanwhile, no obvious decrease in Na2SO4 rejection was observed.  相似文献   

3.
A thermal stable composite membrane was prepared by interfacial polymerization of piperazine (PIP) and trimesoyl chloride (TMC) on poly(phthalazinone ether amide) (PPEA) ultrafiltration membrane. The effect of reaction parameters on the performance of composite membranes was studied and optimized. The surface morphologies of the composite membrane and the substrate were observed by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The rejection of optimized composite membrane for dyes Congo red (CGR) and Acid chrome blue K (ACBK), the molecular weight (MW) of which is over 400, was over 99.2%, with a flux at about 180 L m−2 h−1. While the rejection for NaCl was only 18.2% with a flux over 270 L m−2 h−1, when tested at 1.0 MPa 60 °C. The composite membrane was applied in the desalination-purification experiment of dye ACBK and NaCl mixed solution. The flux of the membrane increased obviously as the operation pressure and/or temperature increased, while the rejection for dye was constant and kept over 99.3%. The purification experiments were accomplished effectively at 1.0 MPa, 80 °C. Only after five rounds of desalination-concentration experiment, about 160 min, the salt mixed in dye solution was fully removed. The initial flux of the eighth cycle was about 254 L m−2 h−1, which was only 20 L m−2 h−1 lower than that of the first round. The rejection of the membrane was constant and kept over 99.3% through out the eight cycles of purification experiment.  相似文献   

4.
Separation of an organics/water mixture was carried out by reverse osmosis using an α-alumina-supported MFI-type zeolite membrane. The organic rejection performance is strongly dependent on the ionic species and dynamic size of dissolved organics. The membrane showed high rejection efficiency for electrolytes such as pentanoic acid. An organic rejection of 96.5% with a water flux of 0.33 kg m−2 h−1 was obtained for 100 ppm pentanoic acid solution at an operation pressure of 2.76 MPa. For non-electrolyte organics, separation efficiency is governed by the molecular dynamic size; the organics with larger molecular dynamic size show higher separation efficiency. The zeolite membrane gives an organic rejection of 99.5% and 17% for 100 ppm toluene and 100 ppm ethanol, respectively, with a water flux of 0.03 kg m−2 h−1, 0.31 kg m−2 h−1 at an operation pressure of 2.76 MPa. It was observed that organic rejection and water flux were affected by the organic concentration. As pentanoic acid concentration increased from 100 ppm to 500 ppm, both organic rejection and water flux decreased slightly.  相似文献   

5.
Cardo polyetherketone (PEK-C) composite membranes were prepared by casting glutaraldehyde (GA) cross-linked sulfonated cardo polyetherketone (SPEK-C) or silicotungstic acid (STA) filled SPEK-C and poly(vinyl alcohol) (PVA) blending onto a PEK-C substrate. The compatibility between the active layer and PEK-C substrate is improved by immersing the PEK-C substrate in a GA cross-linked sodium alginate (NaAlg) solution and using water–dimethyl sulfoxide (DMSO) as a co-solvent for preparing the STA-PVA-SPEK-C/GA active layer. The pervaporation (PV) dehydration of acetic acid shows that permeation flux decreased and separation factor increased with increasing GA content in the homogeneous membranes. The permeation flux achieved a minimum and the separation factor a maximum when the GA content increased to a certain amount. Thereafter the permeation flux increased and the separation factor decreased with further increasing the GA content. The PV performance of the composite membranes is superior to that of the homogeneous membranes when the feed water content is below 25 wt%. The permeation activation energy of the composite membranes is lower than that of the homogeneous membranes in the PV dehydration of 10 wt% water in acetic acid. The STA-PVA-SPEK-C-GA/PEK-C composite membrane using water–DMSO as co-solvent has an excellent separation performance with a flux of 592 g m−2 h−1 and a separation factor of 91.2 at a feed water content of 10 wt% at 50 °C.  相似文献   

6.
Novel organic–inorganic hybrid membranes were prepared through sol–gel reaction of poly(vinyl alcohol) (PVA) with γ-aminopropyl-triethoxysilane (APTEOS) for pervaporation (PV) separation of ethanol/water mixtures. The membranes were characterized by FTIR, EDX, WXRD and PALS. The amorphous region of the hybrid membranes increased with increasing APTEOS content, and both the free volume and the hydrophilicity of the hybrid membranes increased when APTEOS content was less than 5 wt%. The swelling degree of the hybrid membranes has been restrained in an aqueous solution owing to the formation of hydrogen and covalent bonds in the membrane matrix. Permeation flux increased remarkably with APTEOS content increasing, and water permselectivity increased at the same time, the trade-off between the permeation flux and water permselectivity of the hybrid membranes was broken. The sorption selectivity increased with increasing temperature, and decreased with increasing water content. In addition, the diffusion selectivity and diffusion coefficient of the permeants through the hybrid membranes were investigated. The hybrid membrane containing 5 wt% APTEOS has highest separation factor of 536.7 at 50 °C and permeation flux of 0.0355 kg m−2 h−1 in PV separation of 5 wt% water in the feed.  相似文献   

7.
This work illustrates the potential use of PEI/PSS bilayers assembled via layer by layer (lbl) method on a nylon microfiltration membrane for the recovery of phosphate from water in the presence of chloride under ultrafiltration conditions. A total of nine bilayers were used for the selective recovery of phosphate. Bilayers were constructed from polyelectrolyte solutions of varying ionic strength (0-1 M of NaCl). The selected pH for deposition of PEI (5.9) and the presence of supporting salt in the polyelectrolyte solution is expected to provide membranes with high permeability and high charge density. This particular combination of bilayers yielded high flux membranes that allowed selective removal of H(2)PO(4)(-) in the presence of Cl(-) at low pressure (0.28 bar). The magnitude of negative solute rejection of chloride showed increasing trend with the number of bilayer for a particular salt concentration. Whereas the increase in magnitude with ionic strength is so high (-6.18 to -269.17 at 0.5 M NaCl for 9 bl) that gave the best observed Cl(-)/H(2)PO(4)(-) selectivity (310.23, flux 13.53 m(3)/m(2)-day). To the best of our knowledge, this is the first time a multilayer polyelectrolyte system with such a high selectivity and rejection for H(2)PO(4)(-) is reported. The solution flux decreased with the number of bilayers and ionic strength. The rejection of phosphate was dependent on feed pH, concentration of deposited polyelectrolyte solution, and composition of membrane support.  相似文献   

8.
聚电解质PDDA/PSS层层自组装膜的渗透汽化性能   总被引:1,自引:0,他引:1  
采用聚电解质层层自组装(LbL)技术, 在不同盐浓度下制备了聚(二烯丙基二甲基氯化铵)/聚苯乙烯磺酸钠(PDDA/PSS) 多层自组装膜, 并用于渗透汽化性能的研究. 重点考察了组装溶液中NaCl的浓度、组装层数及操作温度对自组装膜的异丙醇脱水性能的影响. 同时, 用扫描电镜观测了不同条件下制备膜的表面形貌. 结果表明, 在高NaCl含量的聚电解质溶液中只需组装几个双层的LbL膜, 即能获得较高的分离因子和较大的通量, 并解释了该LbL膜呈现反“trade-off”现象的原因.  相似文献   

9.
Potential fouling reducing coating materials were synthesized via free-radical photopolymerization of aqueous solutions of poly(ethylene glycol) diacrylate (PEGDA). Crosslinked PEGDA (XLPEGDA) exhibited high water permeability and good fouling resistance to oil/water mixtures. Water permeability increased strongly with increasing the water content in the prepolymerization water mixture, going from 10 to 150 L μm/(m2 h bar) as prepolymerization water content increased from 60 to 80 wt.%. However, molecular weight cutoff decreased as water content increased. These materials were applied to polysulfone (PSF) UF membranes to form coatings on the surface of the PSF membranes. Oil/water crossflow filtration experiments showed that the coated PSF membranes had water flux values 400% higher than that of an uncoated PSF membrane after 24 h of operation, and the coated membranes had higher organic rejection than the uncoated membranes.  相似文献   

10.
Cobalt-doped silica membranes were synthesized using tetraethyl orthosilicate-derived sol mixed with cobalt nitrate hexahydrate. The cobalt-doped silica structural characterization showed the formation of crystalline Co3O4 and silanol groups upon calcination. The metal oxide phase was sequentially reduced at high temperature in rich hydrogen atmosphere resulting in the production of high quality membranes. The cobalt concentration was almost constant throughout the film depth, though the silica to cobalt ratio changed from 33:1 at the surface to 7:1 at the interface with the alumina layer. It is possible that cobalt has more affinity to alumina, thus forming CoOAl2O3. The He/N2 selectivities reached 350 and 570 at 160 °C for dry and 100 °C wet gas testing, respectively. Subsequent exposure to water vapour, the membranes was regenerated under dry gas condition and He/N2 selectivities significantly improved to 1100. The permeation of gases generally followed a temperature dependency flux or activated transport, with best helium permeation and activation energy results of 9.5 × 10−8 mol m−2 s−1 Pa−1 and 15 kJ mol−1. Exposure of the membranes to water vapour led to a reduction in the permeation of nitrogen, attributed to water adsorption and structural changes of the silica matrix. However, the overall integrity of the cobalt-doped silica membrane was retained, given an indication that cobalt was able to counteract to some extent the effect of water on the silica matrix. These results show the potential for metal doping to create membranes suited for industrial gas separation.  相似文献   

11.
NaA zeolite microfiltration (MF) membranes were prepared on α-Al2O3 tube by in situ hydrothermal synthesis method and investigated for water separation and recovery from oily water. NaA/α-Al2O3 MF membranes with average inter-particle pore sizes of 1.2 μm, 0.4 μm and 0.2 μm were prepared. The membranes were characterized by scanning electron microscope (SEM) and the inter-particle pore size distribution (PSD) was determined by gas bubble pressure method. Membranes with pore sizes of 1.2 μm (NaA1) and 0.4 μm (NaA2) were used to treat an oil-in-water emulsion containing 100 mg/L oil. Better than 99% oil rejection was obtained and water containing less than 1 mg/L oil was produced at 85 L m−2 h−1 by NaA1 at a membrane pressure of 50 kPa. Consistent membrane performance was maintained by a regeneration regime consisting of frequent backwash with hot water and alkali solution.  相似文献   

12.
We report the use of a variety of polyelectrolyte multilayers (PEMs) as selective skins in composite membranes for nanofiltration (NF) and diffusion dialysis. Deposition of PEMs occurs through simple alternating adsorption of polycations and polyanions, and separations can be optimized by varying the constituent polyelectrolytes as well as deposition conditions. In general, the use of polycations and polyanions with lower charge densities allows separation of larger analytes. Depending on the polyelectrolytes employed, PEM membranes can remove salt from sugar solutions, separate proteins, or allow size-selective passage of specific sugars. Additionally, because of the minimal thickness of PEMs, NF pure water fluxes through these membranes typically range from 1.5 to 3 m3/(m2 day) at 4.8 bar. Specifically, to separate sugars, we employed poly(styrene sulfonate) (PSS)/poly(diallyldimethylammonium chloride) (PDADMAC) films, which allow 42% passage of glucose along with a 98% rejection of raffinose and a pure water flux of 2.4 m3/(m2 day). PSS/PDADMAC membranes are also capable of separating NaCl and sucrose (selectivity of approximately 10), while high-flux chitosan/hyaluronic acid membranes [pure water flux of 5 m3/(m2 day) at 4.8 bar] may prove useful in protein separations.  相似文献   

13.
A feasible approach to construct multilayered enzyme film on the gold electrode surface for use as biosensing interface is described. The film was fabricated by alternate layer-by-layer deposition of periodate-oxidized glucose oxidase (GOx) and poly(allylamine) (PAA). The covalent attachment process was followed and confirmed by electrochemical impedance spectroscopy (EIS). X-ray diffraction (XRD) experiments revealed that the film was homogeneous and formed in an ordered manner with a thickness of 2.6 ± 0.1 nm per bilayer. The gold electrodes modified with the GOx/PAA multilayers showed excellent electrocatalytical response to the oxidation of glucose when ferrocenemethanol was used as an artificial redox mediator, which was studied by cyclic voltammetry (CV). From the analysis of voltammetric signals, the coverage of active enzyme on the electrode surface was estimated, which had a linear relationship with the number of GOx/PAA bilayers. This suggests that the analytical performance such as sensitivity, detection limit, and so on, is tunable by controlling the number of attached bilayers. The six GOx/PAA bilayer electrode exhibited a sensitivity of 15.1 μA mM−1 cm−2 with a detection limit of 3.8 × 10−6 M. In addition, the sensor exhibited good reproducibility and stability.  相似文献   

14.
This paper investigates the microfiltration of skim milk in order to separate caseins micelles from two whey proteins, α-lactalbumin (α-La) and β-lactoglobulin (β-Lg), using a modified dynamic filtration pilot (MSD) consisting in 6 ceramic 9-cm diameter membrane disks of 0.2 μm pores, rotating around a shaft inside cylindrical housing. A comparison was made with another dynamic filtration module consisting in a disk rotating near a fixed PVDF 15.5 cm diameter membrane with 0.15 μm pores. Maximum permeate fluxes were 120 L h−1 m−2 with the MSD module at 1930 rpm and at 40 °C, and 210 L h−1 m−2 at 2500 rpm and 45 °C, with the rotating disk module. Casein rejection was around 99% at high speed for both membranes. α-La transmission decreased with increasing transmembrane pressure (TMP) from 75% to 60% for ceramic membranes and from 25% to 10% for the PVDF one. β-Lg transmissions were lower, ranging from 23% to 15% for ceramic membranes and from 20% to 5% for the PVDF one. In a concentration test with the PVDF membrane at 2000 rpm, the flux decayed from 200 L h−1 m−2 at initial concentration to 80 L h−1 m−2 at VRR = 3.2 and 22.1% of the initial α-La mass was recovered in the permeate, against 8.1% for β-Lg. Permeate fluxes in the mass transfer limited regime (Jlim) of the MSD and rotating disk module operated at various speeds were well correlated by the equation Jlim = 17.13 Vav where Vav denoted the disk azimuthal velocity averaged over the membrane area. Measurements of Jlim, taken from Ref. [G. Samuelsson, P. Dejlmek, G. Tragardh, M. Paulsson, Minimizing whey protein retention in crossflow microfiltration of skim milk. Int. Dairy J. 7 (1997) 237–242] during MF of skim milk using tubular ceramic membranes at velocities from 1.5 to 8 m s−1 with permeate co-current recirculation were found to obey the same correlation.  相似文献   

15.
Novel nanofiltration (NF) membrane was developed from hydroxyl-ended hyperbranched polyester (HPE) and trimesoyl chloride (TMC) by in situ interfacial polymerization process using ultrafiltration polysulfone membrane as porous support. Fourier transform infrared spectroscopy (FTIR-ATR), scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and water contact angle (CA) measurements were employed to characterize the resulting membranes. The results indicated that the crosslinked hyperbranched polyester produced a uniform, ultra-thin active layer atop polysulfone (PSf) membrane support. FTIR-ATR spectra indicated that TMC reacted sufficiently with HPE. Water permeability and salts rejection of the prepared NF membrane were measured under low trans-membrane pressures. The resulting NF membranes exhibited significantly enhanced water permeability while maintaining high rejection of salts. The salts rejection increase was accompanied with the flux decrease when TMC dosage was increased. The flux and rejection of NF 1 for Na2SO4 (1 g/L) reached to 79.1 l/m2 h and 85.4% under 0.3 MPa. The results encourage further exploration of NF membrane preparation using hyperbranched polymers (HBPs) as the selective ultra-thin layer.  相似文献   

16.
Layer-by-layer deposition of anionic and cationic polyelectrolytes readily converts polymeric ultrafiltration membranes into materials capable of nanofiltration. ATR-FTIR spectra confirm that layer-by-layer deposition occurs on the ultrafiltration substrates, and adsorption of as few as 2.5 bilayers of poly(styrenesulfonate) (PSS)/protonated poly(allylamine) (PAH) or 3.5 bilayers of PSS/poly(diallyldimethylammonium chloride) (PDADMAC) reduces the molecular weight cutoff of polyethersulfone ultrafiltration supports from 50 kDa to <500 Da. Deposition of multilayer polyelectrolyte films on 300 and 500 kDa membranes also decreases molecular weight cutoffs, but solute rejections are significantly lower when using these supports, suggesting that the polyelectrolyte films do not completely cover large (0.2-0.4 microm in diameter) pores. On the 50 kDa substrates, PSS/PDADMAC films containing 3.5 bilayers exhibit a 95% rejection of SO(4)(2-) and a chloride/sulfate selectivity of 27, whereas 4.5-bilayer PSS/PAH coatings show a glucose/raffinose selectivity of 100. Pure water flux for [PSS/PAH](3)PSS-coated membranes at 4.8 bar is 1.6 m(3)/(m(2)day), which is more than 2-fold higher than that through a commercial 500 Da membrane.  相似文献   

17.
A new electrogenerated chemiluminescence biosensor was fabricated by immobilizing ECL reagent Ru(bpy)32+ and alcohol dehydrogenase in sol-gel/chitosan/poly(sodium 4-styrene sulfonate) (PSS) organically modified composite material. The component PSS was used to immobilize ECL reagent Ru(bpy)32+ by ion-exchange, while the addition of chitosan was to prevent the cracking of conventional sol-gel-derived glasses and provide biocompatible microenvironment for alcohol dehydrogenase. Such biosensor combined enzymatic selectivity with the sensitivity of ECL detection for quantification of enzyme substrate and it was much simpler than previous double-layer design. The detection limit was 9.3 × 10−6 M for alcohol (S/N = 3) with a linear range from 2.79 × 10−5 to 5.78 × 10−2 M. With ECL detection, the biosensor exhibited wide linear range, high sensitivity and good stability.  相似文献   

18.
A simple and rapid spectrophotometric method for the determination of nitrite is described. This is based upon simple diazotization reactions involving p-nitroaniline (PNA) and sulfanilamide (SA) with ethyl acetoacetate (EAA) as the coupling agent. The absorbance was measured at 507 and 356 nm, respectively. The method is optimized for acidity, amount of reagents required, amount of sodium hydroxide and the tolerance amount of other ions. The range of linearity for PNA-EAA couple was 0.05-6.0 μg ml−1 of nitrite with molar absorptivity of 1.59×104 l mol−1 cm−1; while that for SA-EAA couple was found to be 0.2-3.0 μg ml−1 and 1.22×104 l mol−1 cm−1, respectively. The method has been applied to various water and soil samples.  相似文献   

19.
pH-induced hysteretic gating of track-etched polycarbonate membranes (TEPC) has been achieved by depositing layer-by-layer assembled polyelectrolyte multilayers comprising poly(allylamine hydrochloride) (PAH) and poly(sodium 4-styrenesulfonate) (PSS) at a high pH condition (pH > 9.0). Scanning electron microscopy and transmission electron microscopy showed that the average bilayer thickness of multilayers was greater within the cylindrical pores of track-etched polycarbonate membranes compared to the multilayers on planar substrates (e.g., Si wafers and the face of TEPC membranes). Swelling/deswelling properties of multilayers and gating properties of the multilayer-modified TEPC membranes were studied by measuring the flux of pH-adjusted deionized water. Large discontinuous changes in the transmembrane flux were observed, indicating that the multilayers within the cylindrical pores of TEPC membranes exhibit the discontinuous swelling/deswelling behavior observed previously for planar systems. The degree of swelling as estimated by simple models, however, showed that (PAH/PSS) multilayers in the confined geometry swelled to smaller extents compared to the same multilayers on planar substrates under the same conditions. Multilayer-modified membranes showed reversible gating properties as the pH condition of feed solution was alternated between pH 2.5 and 10.5. In situ atomic force microscopy (AFM) was used to visualize the closing of the pores as a function of time. The hysteretic gating property of the multilayer-modified TEPC membrane was utilized to achieve either a "closed" or "open" state at one pH condition depending on the pretreatment history, thereby enabling either the retention or passage of high-molecular weight polymers by varying the membrane pretreatment condition.  相似文献   

20.
This study focuses on the use of surface-coated reverse osmosis (RO) membranes to reduce membrane fouling in produced water purification. A series of crosslinked PEG-based hydrogels were synthesized using poly(ethylene glycol) diacrylate as the crosslinker and poly(ethylene glycol) acrylate, 2-hydroxyethyl acrylate, or acrylic acid as comonomers. The hydrogels were highly water permeable, with water permeabilities ranging from 10.0 to 17.8 (L μm)/(m2 h bar). The hydrogels were applied to a commercial RO membrane (AG brackish water RO membrane from GE Water and Process Technologies). The water flux of coated membranes and a series-resistance model were used to estimate coating thickness; the coatings were approximately 2 μm thick. NaCl rejection for both uncoated and coated membranes was 99.0% or greater, and coating the membranes appeared to increase salt rejection, in contrast to predictions from the series-resistance model. Zeta potential measurements showed a small reduction in the negative charge of coated membranes relative to uncoated RO membranes. Model oil/water emulsions were used to probe membrane fouling. Emulsions were prepared with either a cationic or an anionic surfactant. Surfactant charge played a significant role in membrane fouling even in the absence of oil. A cationic surfactant, dodecyltrimethyl ammonium bromide (DTAB), caused a strong decline in water flux while an anionic surfactant, sodium dodecyl sulfate (SDS), resulted in little or no flux decline. In the presence of DTAB, the AG RO membrane water flux immediately dropped to 30% of its initial value, but in the presence of SDS, its water flux gradually decreased to 74% of its initial value after 24 h. DTAB-fouled membranes had lower salt rejection than membranes not exposed to DTAB. In contrast, SDS-fouled membranes had higher salt rejection than membranes not exposed to SDS, with rejection values increasing, in some cases, from 99.0 to 99.8% or higher. In both surfactant tests, coated membranes exhibited less flux decline than uncoated AG RO membranes. Additionally, coated membranes experienced little fouling in the presence of an oil/water emulsion prepared from DTAB and n-decane. For example, after 24 h the water flux of the AG RO membrane fell to 26% of its initial value, while the water flux of a PEGDA-coated AG RO membrane was 73% of its initial value.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号