首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Poly(epsilon-caprolactone)/clay nanocomposites via “click” chemistry   总被引:1,自引:0,他引:1  
Poly(epsilon-caprolactone)/clay nanocomposites were prepared by copper(I) catalyzed azide/alkyne cycloaddition (CuAAC) “click” reaction. In this method, ring-opening polymerization of epsilon-caprolactone using propargyl alcohol as the initiator has been performed to produce alkyne-functionalized PCL and the obtained polymers were subsequently attached to azide-modified clay layers by a CuAAC “click” reaction. The exfoliated polymer/clay nanocomposites were characterized by X-ray diffraction spectroscopy, thermogravimetric analysis and transmission electron microscopy.  相似文献   

2.
5-Vinyltetrazole (VT)-based polymer is mainly produced by ‘click chemistry’ from polyacrylonitrile due to the unavailability of 5-vinyltetrazole monomer, which usually produces copolymers of VT and acrylonitrile rather than pure poly(5-vinyltetrazole) (PVT). In present work, VT was synthesized from 5-(2-chloroethyl)tetrazole via dehydrochlorination. A series of PVT with different molecular weight were synthesized by normal free radical polymerization. The chemical structures of VT and PVT were characterized by 1H NMR and FTIR. PVT without any doped acid exhibits certain proton conductivity at higher temperature and anhydrous state. The proton conductivity of PVT decreases at least 2 orders of magnitude after methylation of tetrazole. PVT and PVT/H3PO4 composite membranes are thermally stable up to 200 °C. The glass transition temperature (Tg) of PVT/xH3PO4 composite membranes is shifted from 90 °C for x = 0.5 to 55 °C for x = 1. The temperature dependence of DC conductivity for pure PVT exhibits a simple Arrhenius behavior in the temperature range of 90–160 °C, while PVT/xH3PO4 composite membranes with higher H3PO4 concentration can be fitted by Vogel–Tamman–Fulcher (VTF) equation. PVT/1.0H3PO4 exhibits an anhydrous proton conductivity of 3.05 × 10−3 at 110 °C. The transmission of the PVT/xH3PO4 composite membrane is above 85% in the wavelength of visible light and changes little with acid contents. Thus, PVT/xH3PO4 composite membranes have potential applications not only in intermediate temperature fuel cells but also in solid electrochromic device.  相似文献   

3.
Non-isothermal and isothermal crystallization behaviors of polystyrene-b-poly(ethylene-co-butene) (PSt-b-PEB) block copolymers with different compositions and chain lengths were investigated by differential scanning calorimetry (DSC). The results show that crystallization of PEB block is strongly dependent on the composition. Crystallization temperature (Tc), melting temperature (Tm) and fusion enthalpy (ΔHf) increase rapidly with PEB volume fraction (VE) for block copolymers with VE below 50%, but there is little change when PEB block becomes the major component. Glass transition temperature (Tg) of the PSt block and order-disorder transition temperature (TODT) of block copolymers also have a weak effect. The isothermal crystallization kinetics results show that Avrami exponent (n) was strongly dependent on the composition and crystallization temperature. For the block copolymers with VE below 38.7 vol%, the values of n vary between 0.9 and 1.3, indicating that crystallization is confined. For the PSt-b-PEB block copolymers with VE higher than 50%, fractionated crystallization behavior is usually observed. A two-step isothermal crystallization procedure is applied to these block copolymers. It is found that breakout crystallization occurs at higher Tc, but confined at lower Tc. Two overlapped melting peaks are observed for the block copolymers with fractionated crystallization behavior after two-step crystallization, and only the higher melting peak corresponding to breakout crystallization can be used to derive equilibrium melting temperature.  相似文献   

4.
The randomcopolymers grafted onto the surfaces of SiO2 hollow sphere via reverse atom transfer radical polymerization (RATRP) and "click" chemistry were investigated. A sufficient amount of peroxides, as initiating moieties, were introduced onto the surface of hollow spheres. Then styrene and 4-vinylbenzyl azide were polymerized via surface-initiated reverse atom transfer radical polymerization (SI-RATRP) using the peroxide group modified hollow sphere as initiator, resulting in hollow spheres (HS) with grafted polystyrene-co-poly(4-vinylbenzyl azide) copolymer brushes as (HS-g-PS-co-PVBA) intermediate material. Subsequently, N-propargyl-carbazole (PC) was covalently bonded to HS-g-PS-co-PVBA by the "click" reaction, resulting in the HS-g-PS-co-PVBPC hybrid material. The excitation spectrum is dominated by a broad band from 350 nmto 400 nmwith the maximum peak at 362 nm, attributed to the characteristic absorption of the carbazole group of HS-g-PS-co-PVBPC hybrid material.  相似文献   

5.
A novel ω-azido-functionalized RAFT reagent, O-(2-azido-ethyl) S-benzyl dithiocarbonate (AEBDC), was synthesized and subsequently employed to mediate the reversible addition-fragmentation chain transfer (RAFT) polymerization of vinyl acetate (VAc) to prepare end-functionalized polymers. The polymerization results showed that the RAFT polymerizations of VAc could be well controlled using AEBDC as the RAFT agent. Number-average molecular weights (Mn GPC) increased linearly with monomer conversion, and molecular weight distributions were relatively narrow. 1H NMR spectrum of the poly(vinyl acetate) (PVAc) confirmed the existence of functional azido group at the end of the polymers chains. The ω-azido-terminated polymers were coupled by “click” chemistry with a fluorescent alkyne, 7-propinyloxy coumarin, to prepare fluorescent PVAc. The fluorescence properties of the PVAc homopolymers before and after coupling with 7-propinyloxy coumarin in CH2Cl2 solution were investigated.  相似文献   

6.
A small amount of cyano groups in poly(styrene-co-acrylonitrile) (SAN) was converted to oxazoline groups through reaction with 2-aminoethanol. Reactive melt blending of oxazoline-containing SAN and acidified multiwalled carbon nanotubes (MWCNTs) leads to the grafting of polymer chains onto MWCNTs arising from reactions between oxazoline and carboxylic acid groups. Spectroscopic, thermal and microscopic techniques confirmed the successful grafting of SAN onto MWCNTs. This method is comparatively simpler and greener than a previously reported method, and can be adopted to graft other acrylonitrile-containing polymers onto MWCNTs.  相似文献   

7.
In this work, we have prepared a composite styrene acrylonitrile (SAN) membrane on a ceramic clay plate by coating a prepolymer solution prepared using a dual initiator system. This membrane is chemically modified by gas phase nitration followed by amination and quaternization to make it charged and has been characterized by FTIR, SEM, contact angle measurements, AFM, water content, water permeability measurements and molecular weight cut-off experiments. The membrane has been further characterized using chromic acid rejection (real and observed) at different pressures, feed concentrations and pH. The modified membrane is found to possess a real rejection of above 90% with high water flux at low pressure drop.  相似文献   

8.
Comb copolymers consisting of polystyrene backbone and poly(tert-butyl (meth)acrylate) side chains were synthesized by combination of nitroxide (TEMPO)-mediated polymerization (NMP) and photoinduced grafting from macro-iniferters. First, poly(chloromethylstyrene), PCMS, with the degree of polymerization and two random poly(styrene-co-chloromethylstyrene) copolymers, P(S-co-CMS), with similar but different content (8 and 14 mol%) of CMS units, were synthesized by NMP. In the second step the CMS units both in the homopolymer and the copolymers were converted to N,N-diethyldithiocarbamyl groups (DC) yielding photosensitive multifunctional macro-iniferters. Finally, tert-butyl methacrylate tBuMA was grafted from the synthesized polymer backbones by iniferter technique under UV-irradiation yielding copolymers polystyrene-graft-poly(tert-butyl methacrylate) PS-g-P(tBuMA). Grafting initiated by the macro-iniferters containing ∼6-11 DC initiating sites per macromolecule proceeded by pseudo-living polymerization mechanism, i.e., the number-average molecular weight increased with conversion and the SEC traces were unimodal. In contrast, photo-polymerization initiated by highly functionalized polystyrene backbone was poorly controlled. Hydrolysis of loosely grafted copolymers PS-g-P(tBuMA) afforded amphiphilic copolymers polystyrene-graft-poly(methacrylic acid). Molecular parameters of the synthesized graft copolymers in dilute THF solutions were determined by scattering (DLS, SLS, SAXS) and viscometric measurements.  相似文献   

9.
Monodisperse and isolated microspheres of poly(N-methylaniline) were successfully prepared through chemical polymerization of N-methylaniline by in adipic acid containing poly(vinylpyrrolidone) (PVP). Mean diameters of the microspheres with smooth surfaces changed from 320 to 100 nm by increasing the reaction temperature from 25 to 75 °C. The concentration of PVP did not affect much the size of microspheres, but the increased PVP concentration led to longer induction times for the onset of dispersion polymerization.  相似文献   

10.
A facile synthesis of poly(lauryl acrylate) has been achieved by atom transfer radical polymerization using benzyl-2-bromoisobutyrate, copper (I) bromide, and N-(n-octyl)-2-pyridylmethanimine (OPMI). The latter was of great interest as its synthesis was very easy to carry out and as it allowed the reaction mixture to be homogeneous, which was essential for the control of the reaction. The polymerization was controlled under these conditions and was optimized with the addition of copper (II) bromide as deactivator. We proved that the synthesis of poly(lauryl acrylates) with well defined molecular weights and narrow polydispersities was possible using a ligand which does not require difficult synthesis and purification. We also showed the ability of pyridylmethanimine ligands to control ATRP of an acrylate derivative. Best results were obtained at 130 °C in xylene for [Initiator]0/[Cu(I)Br]0/[Cu(II)Br2]0/[OPMI]/[lauryl acrylate] equal to 1/1/0.05/2.2/181, respectively (Mn = 19,942, DPI = 1.28).  相似文献   

11.
Free radical copolymerizations of N-isopropyl acrylamide (NIPAM) and cationic N-(3-aminopropyl) methacrylamide hydrochloride (APMH) were investigated to prepare amine-functional temperature responsive copolymers. The reactivity ratios for NIPAM and APMH were evaluated in media of different ionic strength (rNIPAM = 0.7 and rAPMH = 0.7-1.2). Phase separation behavior of the random copolymers with only 5 mol% of the APMH was found to be suppressed in pure water at temperatures up to 45 °C due to electrostatic repulsion among the cationic amine groups randomly distributed along the copolymer chain. Alternate sequential addition of PNIPAM/APMH mixtures and pure NIPAM was used to provide increased control of the location of APMH units along the chain. Consequently (close to) homo-PNIPAM block(s) were formed as evidenced by its characteristic phase transition at 33 °C. The influences of the monomer feeding time and feeding interval time to the APMH distribution were investigated to prepare copolymers with thermo-induced phase separation under physiologically relevant temperature and to determine the extent of conjugation to poly(ethylene oxide).  相似文献   

12.
The two types of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)s [P(3HB-co-3HV)s] were produced by Paracoccus denitrificans ATCC 17741 using two different feeding methods. The produced P(3HB-co-3HV)s were fractionated and the copolymer sequence distributions were analyzed by 1H and 13C NMR spectroscopy. It was found that the P(3HB-co-3HV) samples produced by conventional feeding method were statistically random copolymers. The sequence distributions of P(3HB-co-3HV) samples produced by optimization method were different from random P(3HB-co-3HV)s. The thermal properties and melting behaviors were analyzed by differential scanning calorimetry (DSC). These results demonstrated that P(3HB-co-3HV) samples produced by optimization method are close in nature to P(3HB-co-3HV)s rich in long-sequence of block 3HB units, but less in 3HV random regions. The enzymatic degradation profile of P(3HB-co-3HV) films was investigated in the presence of 3-hydroxybutyrate depolymerase from Pseudomonase lemoignei. The degradation process was observed by monitoring the time-dependent change in the weight loss of copolymer films. The surface erosion of copolymer films was qualitatively monitored by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The highest degradation rate of 2.6% per day was observed for random P(3HB-co-38%3HV) produced by conventional method. In comparison, the hydrolysis degradation rates of random P(3HB-co-3HV)s were about one time faster than those of P(3HB-co-3HV)s produced by optimization method.  相似文献   

13.
The reaction of N-(5-methyl-2-thienylmethylidene)-2-thiolethylamine (1) with Fe2(CO)9 in refluxing acetonitrile yielded di-(μ3-thia)nonacarbonyltriiron (2), μ-[N-(5-methyl-2-thienylmethyl)-η11(N);η11(S)-2-thiolatoethylamido]hexacarbonyldiiron (3), and N-(5-methyl-2-thienylmethylidene)amine (4). If the reaction was carried out at 45 °C, di-μ-[N-(5-methyl-2-thienylmethylidene)-η1(N);η1(S)-2-thiolethylamino]-μ-carbonyl-tetracarbonyldiiron (5) and trace amount of 4 were obtained. Stirring 5 in refluxing acetonitrile led to the thermal decomposition of 5, and ligand 1 was recovered quantitatively. However, in the presence of excess amount of Fe2(CO)9 in refluxing acetonitrile, complex 5 was converted into 2-4. On the other hand, the reaction of N-(6-methyl-2-pyridylmethylidene)-2-thiolethylamine (6) with Fe2(CO)9 in refluxing acetonitrile produced 2, μ-[N-(6-methyl-2-pyridylmethyl)-η1 (Npy);η11(N); η11(S)-2-thiolatoethylamido]pentacarbonyldiiron (7), and μ-[N-(6-methyl-2-pyridylmethylidene)-η2(C,N);η11(S)-2- thiolethylamino]hexacarbonyldiiron (8). Reactions of both complex 7 and 8 with NOBF4 gave μ-[(6-methyl-2-pyridylmethyl)-η1(Npy);η11(N);η11(S)-2-thiolatoethylamido](acetonitrile)tricarbonylnitrosyldiiron (9). These reaction products were well characterized spectrally. The molecular structures of complexes 3, 7-9 have been determined by means of X-ray diffraction. Intramolecular 1,5-hydrogen shift from the thiol to the methine carbon was observed in complexes 3, 7, and 9.  相似文献   

14.
2′-O-(1H-Tetrazol-5-yl)ethyladenosine was synthesized using 2′-O-cyanoethyladenosine derivative as a key intermediate. The 2′-O-(1H-tetrazol-5-yl)ethyl modifications exhibited intriguing properties such as the change in the structure of the tetrazole residue between a protonated and a deprotonated form. The Tm experiments of various oligodeoxynucleotides having a 2′-O-(1H-tetrazol-5-yl)ethyl-modified adenosine showed reduced hybridization affinity in comparison to the unmodified oligonucleotides toward their complementary oligodeoxynucleotides. The mechanism of the reduced hybridization affinity was discussed on the basis of the structure and the physicochemical properties of the tetrazole moiety.  相似文献   

15.
Streptomyces omiyaensis SSM 5670 was characterized by its ability to use compression moulded samples of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) as its sole carbon source. Biodegradation of PHBV in liquid mineral salts medium was investigated using scanning electron microscopy, gravimetric measurements, capillary viscometry, tensile testing and wide angle X-ray spectroscopy. The biodegradation of PHBV proceeds via surface erosion mechanism, resulting in the formation of pits by microbial attack. PHBV specimens lost about 45% of their original weight after 45 days of exposure. During the degradation process the elastic modulus reduces less than 10%. The formation of pores and microcracks initiated at the degraded pits determines the reduction of the elongation and stress at break. However, the true stress at break is practically independent of the degradation time. No significant changes of PHBV molecular weight or crystallinity were observed during biodegradation. The polymer chain cleavage occurred only at the specimen surface and does not discriminate between crystalline and amorphous states.  相似文献   

16.
A short, efficient synthesis of 5′-amino-5′-(S)-methyl-2′,5′-dideoxynucleosides 1 has been developed through the diastereoselective addition of methylmagnesium bromide or methyllithium to an intermediate tert-butylsulfinimide.  相似文献   

17.
A series of N-(1,2,4-triazole-4-yl)-N′-(fluorine-containing-phenyl)carbamimidothioates 5a-i were synthesized by reacting 4-amine-1,2,4-trizaole with corresponding aryl isothiocyanates in ethanol at room temperature and, in a subsequent step, with methyl iodide. The antifungal activities of the title compounds against the fungi Rhizoctonia solan and Pyricularia orizae were screened.  相似文献   

18.
Poly(3-hydroxybutyrate) [P(3HB)] homopolymer and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] copolymer was produced by Comamonas sp. EB172 using single and mixture of carbon sources. Poly(3-hydroxyvalerate) P(3HV) incorporation in the copolymer was obtained when propionic and valeric acid was used as precursors. Incorporation of 3HV fractions in the copolymer varied from 45 to 86 mol% when initial pH of the medium was regulated. In fed-batch cultivation, organic acids derived from anaerobically treated palm oil mill effluent (POME) were shown to be suitable carbon sources for polyhydroxyalkanoate (PHA) production by Comamonas sp. EB172. Number average molecular weight (Mn) produced by the strain was in the range of 153-412 kDa with polydispersity index (Mw/Mn) in the range of 2.2-2.6, respectively. Incorporation of higher 3HV units improved the thermal stability of P(3HB-co-3HV) copolymer. Thus the newly isolated bacterium Comamonas sp. EB172 is a suitable candidate for PHA production using POME as renewable and alternative cheap raw materials.  相似文献   

19.
An amphiphilic block copolymer of poly(N‐vinyl pyrrolidone)‐b‐poly(ε‐caprolactone) (PVP‐b‐PCL) was synthesized by a combination of cobalt‐mediated radical polymerization (CMRP) and ring‐opening polymerization (ROP). The micellar characteristics of this copolymer were subsequently investigated. PVP (Mn = 11,400, Mw/Mn = 1.32) was synthesized at 20 °C via CMRP using a molar ratio of [VP]0/[V‐70]0/[Co]0 = 150/8/1. The PVP was then reacted with 2,2′‐azobis[2‐methyl‐N‐(2‐hydroxyethyl)propionamide] (VA‐086) to modify its cobalt complex chain end to a hydroxyl group. The cobalt (Co) content in the resulting PVP‐OH was 1.2 ppm, indicating that all of the covalent Co? C bonds were cleaved and reacted with VA‐086, and that the separated cobalt complexes were successfully removed. The ROP of CL was subsequently carried out using the produced PVP‐OH as a macroinitiator at 110 °C. The GPC trace of PVP‐b‐PCL was monomodal without any tailing caused by the residual PVP‐OH, indicating that the initiation efficiency was very high. The critical micelle concentration (CMC) of PVP‐b‐PCL (Mn = 18,000, Mw/Mn = 1.35) was 0.015 mg/mL. The PVP‐b‐PCL micelles were spherical in shape with an average diameter of 105 nm. The nanosized PVP‐b‐PCL micelles show promise as novel drug carriers in biomedical and pharmaceutical applications. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3078–3085, 2009  相似文献   

20.
N-Methyl-N-(6-substituted-5-nitro-4-pyrimidinyl)aminoacetic acid methyl esters under the treatment of sodium alkoxides, depending on the nature of substituents in 6 position of the pyrimidine ring, undergo ring closure and rearrangement to give 6-substituted-4-methylamino-5-nitrosopyrimidines or 9-methylpurin-8-ones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号