首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
用XRD、DSC 等手段研究了有机蒙脱土在环氧树脂中的插层与剥离行为,证明环氧树脂容易插层到粘土片层间,形成稳定的插层混合物,加入胺固化剂固化后,粘土被剥离而得到剥离型纳米复合材料,剥离程度与所采用的固化温度关系不大,主要取决于固化程度,全部剥离的时间与环氧树脂凝胶的时间接近.  相似文献   

2.
Nanocomposites based on biodegradable polycaprolactone (PCL) and organically modified layered silicates (organoclay) were prepared by melt mixing. Their structures and properties were characterized by wide‐angle X‐ray diffraction, thermal analysis, and rheological measurements. The exfoliation of the organoclay was achieved via a melt mixing process in an internal mixer and showed a dependence on the type of organic modifier, the organoclay contents, and the processing temperature. The addition of the organoclay to PCL increased the crystallization temperature of PCL, but a high content of the organoclay could show an inverse effect. The PCL/organoclay nanocomposites showed a significant enhancement in their mechanical properties and thermal stability due to the exfoliation of the organoclay. The nanocomposites showed a much higher complex viscosity than the neat PCL and significant shear‐thinning behavior in the low frequency range. The shear storage modulus and loss modulus of the nanocomposites also exhibited less frequency dependence than the pure PCL in the low frequency range, and this was caused by the strong interactions between the organoclay layers and PCL molecules and by the good dispersion of exfoliated organoclay platelets in the PCL. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 670–678, 2003  相似文献   

3.
Rubber compounds based on styrene-butadiene rubber/ethylene propylene diene monomer blends of different compositions (60/40, 70/30, 80/20, 90/10, 100/0) reinforced with 1 wt%, 3 wt%, 5 wt% and 7 wt% organoclay (Cloisite 20A) were prepared on a two roll mill via a vulcanization process and characterized by several techniques. Results of X-ray diffraction showed expansion of the inter-gallery distance, and transmission electron microscopy (TEM) micrographs confirmed that the prepared nanocomposite samples have intercalated and partially exfoliated structures. Cure characteristics showed that, organoclay not only accelerates the vulcanization reaction, but also gives rise to a marked increase of the torque, indicating crosslink density of the prepared compounds increases at the presence of organoclay. Mechanical properties of samples received markedly increase by clay loading due to the good interaction established between nanoclay particles and polymer matrix as it was evidenced by SEM photomicrographs. At the same time, rheological properties showed that addition of nanoclay could improve storage modulus as well as complex viscosity of SBR/EPDM samples. The results of ozone test revealed that the ozone resistance of samples significantly increases as nanoclay or EPDM content increases.  相似文献   

4.
A fully exfoliated organoclay in thermotropic liquid crystalline polymer (TLCP) based nanocomposite was prepared by a method combining ultrasonication, centrifugation, solution casting, and heat‐shearing separation. Morphological study showed that the organoclays of 15–25 nm in size dispersed uniformly in TLCP with fully exfoliated structures. The organoclays formed molecular level interactions with TLCP molecules. The interactions did not affect the liquid crystallinity and mesophase structure of TLCP, but they affected the thermal stability and thermal properties of TLCP, increasing the thermal stability and shifting the transition temperatures to the higher ends. Mechanical rheology investigations in the linear viscoelastic region showed that with the exfoliated organoclay in TLCP, more obvious pseudosolidlike behavior appeared in the terminal region. The rigidity of TLCP was enhanced by the presence of the exfoliated organoclay with percolated structures in the TLCP matrix. In steady shear tests, the nanocomposite had the similar shear viscosity and N1 (the first normal stress difference) to those of TLCP in the steady state condition. Percolated structures were easily destroyed by sufficient shear strain and the exfoliated organoclays were oriented along the shear direction, even assisting the neighboring TLCP molecules to align in the flow direction, resulting in a decrease of viscosity and an increase of the N1 slope. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 712–720, 2010  相似文献   

5.
Syndiotactic 1,2-polybutadiene/organoclay nanocomposites were prepared and characterized by thermogravimetry analysis (TGA), X-ray diffraction (XRD), polarized optical microscopy (POM), and differential scanning calorimetry (DSC), respectively. The XRD shows that exfoliated nanocomposites are formed dominantly at lower clay concentrations (less than 2%), at higher clay contents intercalated nanocomposites dominate. At the same time, the XRD indicates that the crystal structures of sPB formed in the sPB/organoclay nanocomposites do not vary, only the relative intensity of the peaks corresponding to (0 1 0) and (2 0 0)/(1 1 0) crystal planes, respectively, varies. The DSC and POM indicate that organoclay layers can improve cooling crystallization temperature, crystallization rate and reducing the spherulite sizes of sPB. TGA shows that under argon flow the nanocomposites exhibit slight decrease of thermal stability, while under oxygen flow the resistance of oxidation and thermal stability of sPB/organoclay nanocomposites were significantly improved relative to pristine sPB. The primary and secondary crystallization for pristine sPB and sPB/organoclay (2%) nanocomposites were analyzed and compared based on different approaches. The nanocomposites exhibit smaller Avrami exponent and larger crystallization rate constant, with respect to pristine sPB. Primary crystallization under isothermal conditions displays both athermal nucleation and three-dimensional spherulite growth and under nonisothermal processes the mechanism of primary crystallization becomes very complex. Secondary crystallization shows a lower-dimensional crystal growth geometry for both isothermal and nonisothermal conditions. The activation energy of crystallization of sPB and sPB/organoclay nanocomposites under isothermal and nonisothermal conditions were also calculated based on different approaches.  相似文献   

6.
Six kinds of organoclays were prepared through three kinds of polyols (PTMG, PEA and PCL) to investigate the effects of molecular weight and the chemical structure of organifiers. PTMG based organoclays showed higher ion-exchanged fraction than other organoclays and long chain organifier showed better efficiency in ion-exchanged fraction in the case of PTMG based organifiers. From WAXD and TEM analysis, it was confirmed that PTMG based organoclays formed partially exfoliated or fully exfoliated silicate layer structures. PDLA/clay nanocomposites were prepared by in-situ ring-opening polymerization of D-lactide with PTMG based organoclays as macro-initiators in the presence of equimolar Sn(Oct)2/PPh3 complex catalysts. The molecular weight of PDLA/clay nanocomposite decreased as increasing the feeding amount of organoclay because organoclay had hydroxyl terminal groups which can initiate the ring-opening polymerization of D-lactide. From TGA analysis, thermal stabilities of PDLA/clay nanocomposites improved with increasing organoclay content. From WAXD and TEM analysis, organoclay which was prepared by high molecular weight of PTMG based organifier was effective on the exfoliation of silicate layers in the in-situ polymerized PDLA/clay nanocomposite.  相似文献   

7.
A series of polymer blend/organoclay nanocomposite at a fixed blending ratio was prepared using equal ratio of poly(ethylene oxide) (PEO) and poly(methyl methacrylate) (PMMA) via solvent casting method. With respect to nanoscale internal structure, we found that PMMA chains have better affinity with organoclay than PEO, based on the results from X-ray diffraction. Direct visualization via transmission electron microscopy (TEM) also supported the better affinity of PMMA with organoclay by indicating the existence of hybrid structures of mainly intercalated but with some exfoliated forms. The miscible nature of the blend and homogeneous dispersion state of layered silicate in the blend system were investigated via the microscopic fractured surface morphologies. From rheological measurements (storage and loss modulus), we discovered the role of the physical network structure between polymer and organoclay to be a main factor for the enhancement of elastic properties.  相似文献   

8.
Nanocomposites based on biodegradable poly(?-caprolactone) organo-modified clay have been prepared by melt intercalation using a twin-screw extruder. The screw configuration developed allowed us to obtain an intercalated/exfoliated nanocomposite structure using a modified montmorillonite containing no polar groups, in contrast to previous work using mainly alkyl ammonium containing hydroxyl polar groups in poly(?-caprolactone). Montmorillonite nanocomposites were prepared using a specific extrusion profile from a 30 wt% masterbatch of organo-modified clay, which was then diluted at 1, 3 and 5%. Intercalated and/or exfoliated nanocomposites structures were assessed using rheological procedures and confirmed by transmission electron microscopy analysis. Mechanical and thermal properties were found to be strongly dependent on morphology and clay percentage. Crystallinity was only slightly affected by the clay addition. Effect of exfoliation on Young's modulus and thermal stability was investigated. Young's modulus increased significantly and onset degradation temperature measured by TGA was significantly reduced for an exfoliated nanocomposite composition containing 5 wt% organoclay.  相似文献   

9.
Nylon 66–clay (polyamide 66 (PA66)–organophilic montmorillonite (OMT)) exfoliated nanocomposites were synthesized based on nylon 66 salt and organoclay (OMT) modified by hydro-aminocaproic acid via condensation polymerization. And the nanocomposites were characterized by X-ray diffraction and transmission electronic microscopy. Exfoliated morphology with different clay content was obtained. The effects of cation exchange capacity and organic modified agent of OMT on the formation of exfoliated nanocomposites were investigated. It was shown that only suitable cation exchange capacity and organic modified agent could result in the formation of exfoliated morphology under the condition of condensation polymerization. The thermal and flammability properties of the nanocomposites were investigated through thermogravimetry and cone calorimetry experiments. Results indicate that the exfoliated nanocomposites have enhanced thermal stability and flame retardant properties compared with pure PA66.  相似文献   

10.
用带有介晶基元的联苯二酚二缩水甘油醚 (BP)、4 氨基苯基磺酰胺 (SAA)和有机化蒙脱土 (93A)采用浇铸成模固化成型的方法制备出液晶环氧树脂 蒙脱土纳米复合材料 .WRXD结果表明 93A含量是 2 %时可形成剥离型纳米材料 ,而当 10 %时形成插层型纳米材料 ,5 %时则形成剥离和插层混合型的纳米材料 ;POM结果表明蒙脱土的存在能够破坏原有的扇形近晶相液晶织构 .DSC研究表明体系的固化反应动力学 ,可用变形的Kissinger Akahira Sunose法 (VKAS)表征 ,从求出的反应活化能和转化率关系 ,发现反应初期 ,蒙脱土使反应活化能降低 ,能够促进液晶环氧树脂的固化 .  相似文献   

11.
The ablative properties of hydrogenated nitrile butadiene rubber (HNBR) composites filled with fumed silica, organically modified montmorillonite (OMMT), or expanded graphite (EG) were examined. The HNBR/OMMT composite has the lowest linear ablation rate and the highest mass ablation rate and does not tend to be carbonized. On the other hand, the HNBR/EG composite has the highest linear ablation rate and the lowest mass ablation rate, and is prone to carbonization. The ablative properties of the HNBR/silica composite are between those of HNBR/OMMT and HNBR/EG. From the viewpoint of thermal shielding capability, the HNBR/OMMT has the best ablation resistance. Thermogravimetric analysis (TGA) on different HNBR composites indicated that the filler type has no significant effect on the thermal stability of the composites. To understand the ablation mechanisms, the char layers of different HNBR composites after ablation experiments were characterized by scanning electron microscopy (SEM), energy disperse X-ray spectroscopy (EDS), and wide-angle X-ray diffraction (WAXD). The results showed that the porosity in the char layers of the HNBR/OMMT composite was the highest and the corresponding structure was the loosest of the three composites. The montmorillonite (MMT) dispersed in HNBR experienced phase transition, melting and vaporization when exposed to the flame with the temperature over 2000 °C. Fumed silica only melted at such situation. On the other hand, the EG kept their original crystalline structures after the ablation test. Based on these results, the effect of the filler type on the ablation mechanisms of the HNBR composites was discussed.  相似文献   

12.
Summary: Preparation and morphology of high density polyethylene (HDPE)/ polyamide 6 (PA 6)/modified clay nanocomposites were studied. The ability of PA 6 in dispersing clays was used to prepare modified delaminated clays, which were then mixed with HDPE. Mixing was performed using melt processing in a torque rheometer equipped with roller rotors. After etching the materials with boiling toluene and formic acid at room temperature, the morphology was examined by SEM analyses, showing that the PA 6 formed the continuous phase and HDPE the dispersed phase. X-ray diffraction patterns show that the (001) peak of the clay is dramatically decreased and shifted to lower angles, indicating that intercalated/exfoliated nanocomposites are obtained. TEM analyses confirmed the typical structure of exfoliated nanocomposites. A scheme for the mechanism of exfoliation and/or intercalation of these HDPE /PA 6/ /organoclay nanocomposites is proposed.  相似文献   

13.
Bo  Xu  Yi-hu  Song  Yong-gang  Shang  Guan  郑强 《高分子科学》2006,(3):299-306
Melt extrusion was used to prepare binary nanocomposites of ethylene copolymers and organoclay and trinary nanocomposites of low-density polyethylene (LDPE), ethylene copolymer and organoclay. X-ray diffraction (XRD) and transmission electron microscopy (TEM) were used to analyze the structure of the clay phase and the morphology of the nanocomposites. Influences of the comonomer in the copolymer and the content of the copolymer on the morphology of the resulting nanocomposites were discussed. The binary and the trinary composites may form intercalated or exfoliated structures depending on the interaction between the copolymer and the clay layers and the content of the copolymer.  相似文献   

14.
Organoclays are usually used as sorbents to reduce the spread of organic compounds and to remove them at contaminated sites. The sorption equilibrium and the mechanisms of volatile organic compounds (VOCs) on organoclays under different humidities are helpful for developing efficient organoclays and for predicting the fate of VOCs in the environment. In this study, the organoclay was synthesized through exchanging inorganic cations by hexadecyltrimethyl ammonium (HDTMA) into montmorillonite, resulting in 12?% of organic content. The surface area of organoclay was smaller than the unmodified clay due to the incorporation of organic cations into the interlayer. Both adsorption on organoclay surface and partition into the incorporated HDTMA in organoclay played roles on the sorption process. Compared the sorption coefficients in montmorillonite and different modified clays, the incorporated organic cations overcame the inhibition effect of hydrophilic surface of clay on the sorption process of hydrophobic organic compounds from water. The sorption coefficients of VOC vapors on organoclay were further characterized using a linear solvation energy relationship (LSER). The fitted LSER equations were obtained by a multiple regression of the sorption coefficients of 22 probe chemicals against their solvation parameters. The coefficients of the five-parameter LSER equations showed that high HDTMA-content montmorillonite interacts with VOC molecules mainly through dispersion, partly through dipolarity/polarizability and hydrogen-bonds as well as with negative π-/n-electron pair interaction. The interaction analysis by LSERs suggests that the potential predominant factors governing the sorption of VOCs are dispersion interactions under all tested humidity conditions, similar with the lower level modified clay. The derived LSER equations successfully fit the sorption coefficients of VOCs on organoclay under different humidity conditions. It is helpful to design better toxic vapor removal strategy and evaluate the fate of organic contaminants in the environment.  相似文献   

15.
采用分子动力学模拟方法构建了氢化丁腈橡胶的分子链结构并计算出不同压缩比下的均方回转半径,同时对应力弛豫进行了理论预测并与压缩应力弛豫实验结果进行了对比.研究发现,均方回转半径随着压力的增大而逐渐降低,随着温度的增大而逐渐增大;在不同压力下,应力均随着时间的增大而逐渐降低而且当时间达到一定程度后应力降低逐渐平缓;计算结果表明压力增大或低温下均方回转半径小、弛豫时间长,体系越表现出弹性特征,此结果表明可用均方回转半径的变化来定量描述橡胶材料体系的应力弛豫变化,分子模拟得到的应力弛豫规律与实验结果有较好吻合.  相似文献   

16.
Water blown rigid polyurethane foams (PUF) with organoclay/organically modified nanoclay (ONC) were prepared and their properties such as density, mechanical, morphological, insulation, thermal and flame retardant properties were studied. In this investigation, the ONC content was varied from 1 to 10 parts per hundred of polyol (php) by weight. It was observed that the compressive strength of ONC filled PUF increased up to 3 php of ONC loading and then it decreased. Wide angle X-ray diffraction and transmission electron microscopy studies indicated the exfoliated dispersion of ONC in PUF. The thermal conductivity of ONC filled PUF decreases up to 5 php and then increases. The glass transition temperature (Tg) of PUF decreases on loading of ONC. The TGA analysis shows that there is slight increase in degradation temperature with increase in ONC loading. The flame retardant properties (LOI and flame spread rate) are improved slightly on addition (3 php) of ONC filled PUF.  相似文献   

17.
Exfoliated nylon‐11/layered silicate nanocomposites were prepared via in situ polymerization by dispersing organoclay in 11‐aminoundecanoic acid monomer. The original clay was modified by a novel method with 11‐aminoundecanoic acid. In situ Fourier transform infrared spectroscopy results show that stronger hydrogen bonds exist between nylon‐11 and organoclay than that of between nylon‐11 and original clay. The linear dynamic viscoelasticity of organoclay nanocomposites was investigated. Before taking rheological measurements, the exfoliated and intercalating structures and the thermal properties were characterized using X‐ray diffraction, transmission electron microscopy, differential scanning calorimetry, and thermogravimetric analysis. The results show that the clay was uniformly distributed in nylon‐11 matrix during in situ polymerization of clay with 4 wt % or less. The presence of clay in nylon‐11 matrix increased the crystallization temperature and the thermal stability of nanocomposites prepared. Rheological properties such as storage modulus, loss modulus, and relative viscosity have close relationship with the dispersion favorably compatible with the organically modified clay. Comparing with neat nylon‐11, the nanocomposites show much higher dynamic modulus and stronger shear thinning behavior. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 2161–2172, 2006  相似文献   

18.
Hydrogenated acrylonitrile butadiene rubber (HNBR) was chosen to develop peroxide cured and carbon black N220 (CB) reinforced high modulus vulcanizates with possible applications in packers for oil exploration. HNBR vulcanizates are investigated by Rubber Processing Analyzer RPA 2000 and stress-strain tests conducted both in elongation and compression mode. All the mechanicals properties were tested both at room temperature (RT) and 150 °C in order to reflect application of packers. The results show that the modulus of CB filled HNBR vulcanizates increases with the increase of CB loadings in shear, tensile and compression mode. The physical interactions resulting from CB reinforcements show a stronger temperature-dependence than chemical crosslinks formed by curing agent. So the addition of reinforcing carbon black will have limited benefit for producing packer compounds with high enough modulus at high temperature, but more amount of curing agent will contribute to a stable high enough modulus. It is testified the filler-filler interaction is more temperature dependent than filler-rubber interaction and more chemical crosslinks increase the filler-rubber bonding and slightly decrease the filler-filler interaction, which is confirmed by the reinforcement factors. Compression tests show a strong dependence on the geometry of the samples and the compressive Payne Effect is examined by the multiple compression cycles. It gets stronger as the CB loading is increased.  相似文献   

19.
剥离型硅橡胶/黏土纳米复合材料研究   总被引:10,自引:0,他引:10  
利用层状硅酸盐制备有机 无机纳米复合材料是当前人们研究的热点[1,2 ] ,这类材料具有较常规聚合物 无机填料复合材料无法比拟的优点 ,可以明显改善高分子材料的物理机械性能、热稳定性、气体阻隔性、阻燃性、导电性、光学性等 .一般来说 ,聚合物 层状硅酸盐 (Polymerlayeredsilicate ,PLS)纳米复合材料可分为插层型和剥离型两种类型 .插层型纳米复合材料即聚合物插入到硅酸盐层中 ,硅酸盐在近程仍保持原有的有序晶体结构 ,在远程则是无序的 .对弹性体而言 ,硅酸盐含量在插层型杂化材料中的含量比较高 ,力学性能…  相似文献   

20.
This paper investigates the possibility of improving the mechanical and thermal properties of epoxy and unsaturated polyester toughened epoxy resins through the dispersion of octadecyl ammonium ion-exchanged montmorillonite (organoclay) through exfoliated mechanism. The nanocomposites prepared are characterized for their structural change and studied for their crystallite size, mechanical, thermal and water absorption (hydrophilicity) properties. The mechanical data indicates significant improvement in the flexural and tensile properties over the neat epoxy and UP-epoxy matrix according to the percentage content of organoclay. The thermal behavior too shows noticeable enhancement in glass transition temperature T g and high thermal stability. Hydrophilicity of all the composites decreases irrespective of the concentration of organoclay on the epoxy and UP-epoxy matrices. The homogeneous morphology of epoxy and UP toughened epoxy nanocomposite hybrid systems is ascertained using scanning electron microscope (SEM). X-ray results point out that the cetyl ammonium modified clay filled composites exhibited the exfoliated structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号