首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The melting behaviour, the crystallization kinetics and the morphology of block poly(butylene/diethylene succinate) copolymers (PBSPDGS) were investigated by means of differential scanning calorimetry and hot stage optical microscopy. Multiple endotherms were evidenced in the PBSPDGS samples, due to melting and recrystallization processes, similarly to PBS. By applying the Hoffman-Weeks’ method, the of both the homopolymer and the copolymers was derived. The isothermal crystallization kinetics was analyzed according to the Avrami’s treatment. The copolymers with long PBS blocks are characterized by a very similar behaviour with respect to pure poly(butilene succinate), indicating that PBS macromolecular folding is not affected by the presence of non-crystallizable diethylene succinate blocks. On the contrary, the copolymers characterized by very short PBS block length were found to crystallize at a slower rate than the homopolymer. As a matter of fact, a higher value of the work of chain folding was also derived on the basis of Hoffman-Lauritzen nucleation theory. Anyway, in all cases the crystallization mechanism (heterogeneous nucleation and three-dimensional growth) was found to be the same.  相似文献   

2.
Fully biodegradable poly(butylene succinate) (PBS) and poly(butylene carbonate) (PBC) blends were prepared by melt blending. Miscibility, thermal properties, crystallization behavior and mechanical properties of PBS/PBC blends were investigated by scanning electron microscopy (SEM), phase contrast optical microscopy (PCOM), differential scanning calorimetry (DSC), wide angle X-ray diffraction (WAXD) and mechanical properties tests. The SEM and PCOM results indicated that PBS was immiscible with PBC. The WAXD results showed that the crystal structures of both PBS and PBC were not changed by blending and the two components crystallized separately in the blends. The isothermal crystallization data showed that the crystallization rate of PBS increased with the increase of PBC content in the blends. The impact strength of PBS was improved significantly by blending with PBC. When the PBC content was 40%, the impact strength of PBS was increased by nearly 9 times.  相似文献   

3.
A series of branched poly(butylene succinate) (PBS) were synthesized with several branching agents namely trimethylol propane (TMP), malic acid, trimesic acid, citric acid and glycerol propoxylate. The structure of the branched polymers was analyzed by SEC and 1H-NMR. The effect of branching agent structure on crystallization was also investigated and played a significant role. Isothermal studies showed that glycerol propoxylate could act as a nucleating agent. By contrast high content of TMP disturbed the regularity of the chain and hindered the crystallization of PBS. From the non-isothermal kinetic study, it was found that glycerol propoxylate increased noticeably the crystallization rate due to the flexible structure of the branching agent. A secondary nucleation was observed with glycerol propoxylate attributed to the crystallization of amorphous fraction included between crystallites formed at the primary crystallization. Chain topology was obtained through rheological investigations and the synthesized polymers showed a typical behavior of a mixture of linear and randomly branched PBS. The incorporation of branches improved the processability of PBS for film blowing application and the modulus and the stress at break of the resulting film were significantly increased.  相似文献   

4.
Graphene oxide (GO) was incorporated into poly(butylene succinate) (PBS) via a solution coagulation method to fabricate PBS/GO nanocomposites. Scanning electron microscope and transmission electron microscope observations indicated that GO with exfoliated lamella dispersed in PBS uniformly and showed good interfacial adhesion with the PBS matrix. Differential scanning calorimetry analysis suggested that the crystallization ability of PBS first increased and then decreased with increase in GO content, due to the competitive nucleating effect and confined space effect with addition of exfoliated GO. Isothermal crystallization kinetics investigation showed that the overall crystallization rate of PBS first increased and then decreased with increasing GO content while the crystallization mechanism remained unchanged. Polarized optical microscopy analysis indicated that GO worked as an effective nucleating agent for PBS. X-ray diffraction characterization suggested that incorporation of GO did not change the crystal structure of PBS. Both tensile testing and dynamic mechanical analysis witnessed the reinforcement in mechanical performance of PBS by incorporation of GO.  相似文献   

5.
Multiple melting behavior of poly(butylene succinate)   总被引:2,自引:0,他引:2  
The multiple melting behavior of poly(butylenes succinate) (PBS) isothermally crystallized from the melt was investigated using differential scanning calorimetry (DSC), temperature modulated DSC (MDSC) and polarized optical microscopy. PBS exhibits at most four melting endotherms (denoted as Tm1, Tm2, Tm3, and Tm4 from high to low temperatures) and a crystallization exotherm (denoted as Tre) in the DSC heating trace. Multiple melting endotherms were observed even at high heating rates. The origins of each endothermal and exothermal peak were discussed in detail. It is suggested that: (i) the crystallization exothermic peak, Tre, relates to the recrystallization of the melt of the crystallites with lower thermal stability; (ii) the Tm1 is ascribed to the melting of crystallites formed through recrystallization; (iii) two crystal populations with different thermal stability are responsible for the Tm2 and Tm3; (iv) the Tm4, which is the annealing peak, represents the transition of the rigid amorphous fraction (RAF) from solid-like RAF into liquid-like amorphous fraction.  相似文献   

6.
In order to modify the properties of poly(butylene succinate), poly(diethylene glycol succinate) (PDGS) segment was incorporated by chain‐extension reaction of dihydroxyl‐terminated PBS and PDGS precursors using hexamethylene diisocyanate as a chain extender to form PBS‐b‐PDGS multiblock copolymers. The chemical structure and basic physical properties of the multiblock copolyesters were characterized by nuclear magnetic resonance spectroscopy, differential scanning calorimeter (DSC), wide angle X‐ray diffraction, and tensile testing. The results suggested that the incorporation of PDGS segments would increase the elongation at break of PBS significantly while decrease its melting temperature and crystallization temperature slightly. The isothermal crystallization kinetics studied by DSC and polarized optical microscopy indicated that the crystallization rate of the multiblock polymers decreased gradually with increasing PDGS segment content while the crystallization mechanism kept unchanged and the spherulitic growth rate of the multiblock copolymers decreased gradually with increase in PDGS content due to its diluent effect to the crystallization of PBS segments. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
Poly(butylene succinate) (PBSu), poly(butylene succinate-co-adipate) (PBSA) and poly(butylene terephthalate-co-adipate) (PBTA) microcapsules were prepared by the double emulsion/solvent evaporation method. The effect of polymer and poly(vinyl alcohol) (PVA) concentration on the microcapsule morphologies, drug encapsulation efficiency (EE) and drug loading (DL) of bovine serum albumin (BSA) and all-trans retinoic acid (atRA) were all investigated. As a result, the sizes of PBSu, PBSA and PBTA microcapsules were increased significantly by varying polymer concentrations from 6 to 9%. atRA was encapsulated into the microcapsules with an high level of approximately 95% EE. The highest EE and DL of BSA were observed at 1% polymer concentration in values of 60 and 37%, respectively. 4% PVA was found as the optimum concentration and resulted in 75% EE and 14% DL of BSA. The BSA release from the capsules of PBSA was the longest, with 10% release in the first day and a steady release of 17% until the end of day 28. The release of atRA from PBSu microcapsules showed a zero-order profile for 2 weeks, keeping a steady release rate during 4 weeks with a 9% cumulative release. Similarly, the PBSA microcapsules showed a prolonged and a steady release of atRA during 6 weeks with 12% release. In the case of PBTA microcapsules, after a burst release of 10% in the first day, showed a parabolic release profile of atRA during 42 days, releasing 36% of atRA.  相似文献   

8.
The block copolymers of poly(butylene succinate) (PBS) and poly(butylene terephthalate) (PBT) were synthesized by melt processing for different times. The sequence distribution, thermal properties, and crystallization behavior were investigated over a wide range of compositions. For PBS/PBT block copolymers it was confirmed by statistical analysis from 1H-NMR data that the degree of randomness (B) was below 1. The melting peak (Tm) gradually moved to lower temperature with increasing melt processing time. It can be seen that the transesterification between PBS and PBT leads to a random copolymer. From the X-ray diffraction diagrams, only the crystal structure of PBS appeared in the M1 copolymer (PBS 80 wt %) and that of PBT appeared in the M3 (PBS 50 wt %) to M5 (PBS 20 wt %) copolymers. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 147–156, 1998  相似文献   

9.
王学川  晏超 《高分子科学》2014,32(4):488-496
The effects of crystallization temperature and blend ratio on the polymorphic crystal structures of poly(butylene adipate)(PBA) in poly(butylene succinate)(PBS)/poly(butylene adipate)(PBS/PBA) blends were studied by means of differential scanning calorimetry(DSC), wide-angle X-ray diffraction(XRD) and atomic force microscopy(AFM). It was revealed that the polymorphism of PBA can be regulated by the blend ratio even in a non-isothermal crystallization process. The results demonstrate that high temperature favors flat-on α crystals, while low temperature contributes to edge-on β crystals. It was also found that the effect of blend ratio on the crystallization mechanism of PBA is well coincident with that of the crystallization temperature. The increment of PBS content in the PBS/PBA blend gives rise to more β-form crystals of PBA. For those PBS/PBA blends with low PBA content, the interlamellar phase segregation of PBA makes its molecular chains so difficult to diffuse from one isolated microdomain to another that high crystallization temperature and sufficiently long crystallization time will be required if the PBA α-type crystals are targeted.  相似文献   

10.
In order to study the relationship between structure and properties, multiblock copolymers composed of poly(butylene succinate) (PBS) and poly (1,2-propylene succinate) (PPSu) have been synthesized by chain-extension at various molar ratios of hexamethylene diisocyanate (HDI) to polyester-diols, which have been abbreviated as R-values in this paper. Molecular weights of soluble fractions, gel fractions and crosslink densities have been determined. Thermal properties, mechanical properties and biodegradability have been studied and correlated with R-values. Crystallization of copolymers becomes difficult with increasing R-value. Tensile strength, flexural strength and flexural modulus tend to increase with increasing R-value up to 1.2, and vary little when R-value increases from 1.2 to 1.3, then decrease with further increase in R-value. Impact strength achieves a maximum value at R-value of 1.3. Biodegradation rate reaches a minimum value when R-value is 1.1. Biodegradation has been studied systematically by attenuated total reflectance Fourier transform infrared (ATR-FTIR), 1H NMR and SEM.  相似文献   

11.
Two aliphatic polyesters that consisted from succinic acid, ethylene glycol and butylene glycol, —poly(ethylene succinate) (PESu) and poly(butylene succinate) (PBSu)—, were prepared by melt polycondensation process in a glass batch reactor. These polyesters were characterized by DSC, 1H NMR and molecular weight distribution. Their number average molecular weight is almost identical in both polyesters, close to 7000 g/mol, as well as their carboxyl end groups (80 eq/106 g). From TG and Differential TG (DTG) thermograms it was found that the decomposition step appears at a temperature 399 °C for PBSu and 413 °C for PESu. This is an indication that PESu is more stable than PBSu and that chemical structure plays an important role in the thermal decomposition process. In both polyesters degradation takes place in two stages, the first that corresponds to a very small mass loss, and the second at elevated temperatures being the main degradation stage. The two stages are attributed to different decomposition mechanisms as is verified from the values of activation energy determined with iso-conversional methods of Ozawa, Flyn, Wall and Friedman. The first mechanism that takes place at low temperatures, is auto-catalysis with activation energy E = 128 and E = 182 kJ/mol and reaction order n = 0.75 and 1.84 for PBSu and PESu, respectively. The second mechanism is nth-order reaction with E = 189 and 256 kJ/mol and reaction order n = 0.68 and 0.96 for PBSu and PESu, respectively, as they were calculated from the fitting of experimental results.  相似文献   

12.
Biocomposites based on poly(butylene succinate) (PBS) and curaua fibers have been produced by compression molding, and investigated as a function of fiber length and amount. Mechanical tests, water uptake and morphology studies were carried out in order to assess the composite features according to the characteristics of the reinforcing agents. It turns out that the impact and flexural strengths increase with fiber content. Moreover, the fiber length, varying from 1 to 4 cm for the composite reinforced with 20 wt% of fiber, influences impact strength, which is higher for shorter than for longer fibers. However, flexural strength is not greatly influenced by the length of the fibers. Water uptake studies reveal a higher sensitivity of the material to fiber content rather than fiber size. Biocomposites, which are characterized by enhanced mechanical properties as compared to PBS, can have different applications, for example in rigid packaging or interior car parts.  相似文献   

13.
钟淦基  雷军 《高分子科学》2015,33(4):576-586
The crystallization behavior of poly(butylene succinate)(PBS) nanocomposites with a wide range of contents of clays was revealed. It was of interest to find that the crystallization rate of PBS was accelerated obviously at relatively low contents of clays; while a retarded crystallization kinetics and a decreased crystallinity of PBS were found in the nanocomposites with higher clay contents. Two interplaying effects existed in the nanocomposites, i.e., a suppression effect of clays on nucleation and a templating effect of clays on crystal growth, were clarified to contribute to this intriguing crystallization behavior.  相似文献   

14.
A series of poly(butylene succinate)/silica (PBS/silica) nanocomposites were prepared by in situ polymerization. Solid-state 29Si NMR and FTIR analysis indicated that silanol-bonded carbonyl groups are established within PBS/silica nanocomposite materials. Rheological effects inherent to the silica filler were evaluated by melt rheological analysis as a function of shear force in the molten state. Despite high shear force, PBS/silica nanocomposites maintained a relatively high melt viscosity, attributable to a network structure resulting from covalent bonding between silica and the polymer chain. Nanocomposite material containing 3.5 wt% silica exhibited greatly improved mechanical properties. The tensile strength at break and elongation were ca. 38.6 MPa and 515%, while those of the parent PBS were 26.3 MPa and 96%, respectively. PBS/silica nanocomposites showed composition dependency on biodegradation ascribable to reduced crystallinity and preferential microbial attack.  相似文献   

15.
Multi-walled carbon nanotubes (CNTs) were non-covalently functionalized by surface wrapping of poly(sodium 4-styrenesulfonate) (PSS) with the aid of ultrasound. The functionalized CNTs were incorporated into poly(butylene succinate) (PBS) through solution coagulation to fabricate CNTs filled PBS nanocomposites. The morphologies of the PBS/CNT nanocomposites were studied by scanning electron microscope (SEM) and transmission electron microscope (TEM), and the effect of loading of functionalized CNT on the rheological behavior, electrical conductivity and mechanical properties of the nanocomposites was investigated systemically. SEM observation indicates that functionalized CNTs dispersed in PBS matrix without obvious aggregation and showed good interfacial adhesion with the PBS phase. TEM observation reveals that a CNT network was formed when the loading of CNTs increased from 0.1 to 0.3 wt%. Rheological investigation indicates the formation of a CNT network with a percolation threshold of only 0.3 wt%. Significant improvement in electrical conductivity occurred at CNT loading of 0.3 wt%, with the value of electrical conductivity increasing by six orders of magnitude compared to neat PBS. Differential scanning calorimetry indicates that the melt crystallization temperature of PBS was improved by ∼14 °C with addition of only 0.05 wt% functionalized CNTs. Tensile tests indicate that both the yield strength and Young's modulus of PBS were apparently reinforced by incorporation of functionalized CNTs, while the elongation at break was reduced gradually.  相似文献   

16.
李慧慧 《高分子科学》2012,30(2):269-277
The effect of PBS on the morphological features of PVDF has been investigated by optical and atomic force microscopies under various conditions.It was found that neat PVDF forms largeγform spherulites with extraordinarily weak birefringence at 170℃.Adding 30%PBS makes PVDF exhibit intrigued flower-like spherulitic morphology.The growth mechanism was explained by the decrease of the supercooling and the materials dissipation.Increasing the PBS content to 70%favors the formation of ring banded spherulites.Temperature dependent experiments verify theα→γphase transition occurs from the junction sites of theαandγcrystals,while starts from the centers ofαspherulites in the blends.Ring banded structures could be observed in neat PVDF,70/30 blend and 30/70 blend when crystallized at 155℃,withoutγcrystals.The band period of PVDFαspherulites increases with crystallization temperature as well as the amount of PBS content.At 140℃,spherulites in neat PVDF lose their ring banded feature,while coarse spherulites consisting of evident lamellar bundles could be found in 30/70 blend.  相似文献   

17.
王笃金 《高分子科学》2011,29(2):251-258
The early stage of polymer crystallization may be viewed as physical gelation process,i.e.,the phase transition of polymer from liquid to solid.Determination of the gel point is of significance in polymer processing.In this work,the gelation behavior of poly(butylene succinate)(PBS) at different temperatures has been investigated by rheological method.It was found that during the isothermal crystallization process of PBS,both the storage modulus(G′) and the loss modulus(G″) increase with time,and the rheological response of the system varies from viscous-dominated(G′G″),meaning the phase transition from liquid to solid.The physical gel point was determined by the intersection point of loss tangent curves measured under different frequencies.The gel time(t_c) for PBS was found to increase with increasing crystallization temperature.The relative crystallinity of PBS at the gel point is very low(2.5%-8.5%) and increases with increasing the crystallization temperature.The low crystallinity of PBS at the gel point suggests that only a few junctions are necessary to form a spanning network,indicating that the network is"loosely"connected,in another word,the critical gel is soft.Due to the elevated crystallinity at gel point under higher crystallization temperature,the gel strength S_g increases, while the relaxation exponent n decreases with increasing the crystallization temperature.These experimental results suggest that rheological method is an effective tool for verifying the gel point of biodegradable semi-crystalline polymers.  相似文献   

18.
傅强 《高分子科学》2014,32(7):953-960
Poly(butylene succinate) (PBS) with different molecular weight was synthesized from 1, 4-butanediol and succinic acid by direct melt condensation. The synthesized PBS was identified by IH-NMR and FTIR spectrometry. The molecular weight was calculated from the intrinsic viscosity, and its value was between 20000 and 70000. The crystallization behavior and crystal morphology as function of molecular weight were investigated by DSC and PLM, respectively. The mechanical properties and hydrolytic degradation behaviors related with change of molecular weight were also studied in this work. The results demonstrated that the properties of PBS were determined by both molecular weight and crystallization properties (crystallinity as well as crystal morphology). Our work is important for the design and preparation of PBS with proper molecular weight for its practical application.  相似文献   

19.
Nanostructured materials based on organically modified montmorillonite (OMMT) and polypropylene (PP)/poly(butylene succinate) (PBS) blend were prepared via melt-mixing of PP, PBS, and OMMT in a batch mixer. The weight ratio of PP and PBS was 70:30, and the OMMT loading varied from 0.5 to 5 wt%. The surface morphologies of unmodified and OMMT-modified blend were studied by field-emission scanning electron microscopy. Results showed that the particle size of the dispersed PBS phase was significantly reduced with the addition of a small amount of OMMT (1.5 wt%). Upon the addition of 5 wt% of OMMT, the domain size of the dispersed PBS phase changed significantly from the unmodified blend, and a homogeneous dispersion of very fine particles of PBS was observed. The degree of dispersion of silicate layers in the blend matrix was characterized by X-ray diffraction and transmission electron microscopy. The improved adhesion between the phases and the fine morphology of the dispersed phase contributed to the significant improvement in the properties and thermal stability of the final nanocomposite materials. On the basis of these results, we describe a general understanding of how the morphology is related to the final properties of OMMT-incorporated PP/PBS blend.  相似文献   

20.
Poly(butylene oxalate) (PBO) and poly(butylene oxalate/butylene azelate) random copolymers (PBOBAz) of various compositions were synthesized in bulk and characterized in terms of chemical structure and thermal properties. The thermal behavior was examined by thermogravimetric analysis and differential scanning calorimetry. All copolymers were found to be partially crystalline and thermally stable up to about 290 °C. The main effect of copolymerization was a decrease in melting and glass transition temperatures with respect to PBO homopolymer. The pure crystalline phase characteristic of PBO was evidenced by means of X-ray measurements in all the copolymers under investigation. The fusion temperatures appeared to be well correlated to composition by Baur's equation.Amorphous samples were obtained after melt quenching and showed a monotonic decrease of glass transition temperatures as the content of the flexible butylene azelate units is increased. Fox equation described well the Tg-composition data. Lastly, the overall crystallization rate of PBO was found to decrease regularly with increasing butylene azelate unit content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号