首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The gravitational collapse of spherical, barotropic perfect fluids is analyzed here. For the first time, the final state of these systems is studied without resorting to simplifying assumptions - such as self-similarity - using a new approach based on non-linear o.d.e. techniques, and formation of naked singularities is shown to occur for solutions such that the mass function is analytic in a neighborhood of the spacetime singularity.  相似文献   

2.
We study the gravitational collapse of the general spherically symmetric null strange quark fluid having the equation of state, p = ( – 4B)/n, where B is the bag constant. It is an interesting feature that the initial data set giving rise to a naked singularity in the Vaidya collapse of null fluid gets covered due to the presence of the strange quark matter component. Its implication for the Cosmic Censorship Conjecture is discussed.  相似文献   

3.
S D Maharaj  M Govender 《Pramana》2000,54(5):715-727
The junction conditions for a magnetohydrodynamic fluid sphere undergoing dissipative gravitational collapse in the form of a radial heat flux with shear are obtained. These conditions extend particular results of earlier treatments. We demonstrate that the pressure is proportional to the magnitude of the heat flux as is the case in shear-free models. However in our case the gravitational potentials must be solutions of the Einstein-Maxwell system of equations. The mass function m(v) is increased by a factor related to the charge Q of the radiating star. Physical quantities relating to the local conservation of momentum and surface redshift are obtained.  相似文献   

4.
Pankaj S Joshi 《Pramana》2000,55(4):529-544
An outstanding problem in gravitation theory and relativistic astrophysics today is to understand the final outcome of an endless gravitational collapse. Such a continual collapse would take place when stars more massive than few times the mass of the sun collapse under their own gravity on exhausting their nuclear fuel. According to the general theory of relativity, this results either in a black hole, or a naked singularity — which can communicate with far away observers in the universe. While black holes are (almost) being detected and are increasingly used to model high energy astrophysical phenomena, naked singularities have turned into a topic of active discussion, aimed at understanding their structure and implications. Recent developments here are reviewed, indicating future directions.  相似文献   

5.
We analyze spherical dust collapse with non-vanishing radial pressure, II, and vanishing tangential stresses. Considering a barotropic equation of state, II = , we obtain an analytical solution in closed form—which is exact for = –1, 0, and approximate otherwise—near the center of symmetry (where the curvature singularity forms). We study the formation, visibility, and curvature strength of singularities in the resulting spacetime. We find that visible, Tipler strong singularities can develop from generic initial data. Radial pressure alters the spectrum of possible endstates for collapse, increasing the parameter space region that contains no visible singularities, but cannot by itself prevent the formation of visible singularities for sufficiently low values of the energy density. Known results from pressureless dust are recovered in the = 0 limit.  相似文献   

6.
We study the occurrence and nature of naked singularities for a dust model with non-zero cosmological constant in (n+2)-dimensional Szekeres space-times (which possess no Killing vectors) for n 2. We find that central shell-focusing singularities may be locally naked in higher dimensions but depend sensitively on the choice of initial data. In fact, the nature of the initial density determines the possibility of naked singularity in space-times with more than five dimensions. The results are similar to the collapse in spherically symmetric Tolman-Bondi-Lemaître space-times.  相似文献   

7.
Dynamical systems techniques are used to study the class of self-similar static spherically symmetric models with two non-interacting scalar fields with exponential potentials. The global dynamics depends on the scalar self-interaction potential parameters k 1 and k 2. For all values of k 1, k 2, there always exists (a subset of) expanding massless scalar field models that are early-time attractors and (a subset of) contracting massless scalar field models that are late-time attractors. When k 1 1/ and k 2 1/ , in general the solutions evolve from an expanding massless scalar fields model and then recollapse to a contracting massless scalar fields model. When k 1 < 1/ or k 2 < 1/ , the solutions generically evolve away from an expanding massless scalar fields model or an expanding single scalar field model and thereafter asymptote towards a contracting massless scalar fields model or a contracting single scalar field model. It is interesting that in this case a single scalar field model can represent the early-time or late-time asymptotic dynamical state of the models. The dynamics in the physical invariant set which constitutes a part of the boundary of the five-dimensional timelike self-similar physical region are discussed in more detail.  相似文献   

8.
In this paper, following recent results on generalized Vaidya solutions by Wang, we prove that under certain conditions on generalized mass function, strong curvature naked singularities exist in radiation collapse in monopole-Vaidya space-times and also in charged-Vaidya space-times. We thus unify and generalize results of Dwivedi-Joshi and Lake-Zannias. The general case also covers de Sitter-Vaidya space-time recently treated by Wagh-Maharaj with a view to study existence of naked singularities.  相似文献   

9.
We study a scalar field in curved space in three dimensions. We obtain a static perturbative solution and show that this solution satisfies the exact equations in the asymptotic region at infinity. The new solution gives rise to a singularity in the curvature scalar at the origin. Our solution, however, necessitates the excising the region near the origin, thus avoiding the naked singularity.  相似文献   

10.
We investigate the gravitational collapse of a spherically symmetric, inhomogeneous star, which is described by a perfect fluid with heat flow and satisfies the equation of state p=ρ/3 or p=C ρ γ at its center. Different from the ordinary process of gravitational collapsing, the energy of the whole star is emitted into space. And the remaining spacetime is a Minkowski one at the end of the process.  相似文献   

11.
Perfect fluid with kinematic self-similarity is studied in 2+1 dimensional spacetimes with circular symmetry, and various exact solutions to the Einstein field equations are given. These include all the solutions of dust and stiff perfect fluid with self-similarity of the first kind, and all the solutions of perfect fluid with a linear equation of state and self-similarity of the zeroth and second kinds. It is found that some of these solutions represent gravitational collapse, and the final state of the collapse can be either a black hole or a null singularity. It is also shown that one solution can have two different kinds of kinematic self-similarity.  相似文献   

12.
S H Ghate  R V Saraykar  K D Patil 《Pramana》1999,53(2):253-269
In this paper, we consider an inhomogeneous dust collapse, and extend earlier works of Jhingan, Joshi, and Singh to the case where initial density and velocity distributions are finitely differentiable functions of co-moving coordinate r. We study the occurrence of naked singularities under various conditions on the derivatives of initial density and velocity distributions in marginally as well as non-marginally bound case. We then study their stability and genericity with respect to perturbations in the initial data in an appropriate topological sense.  相似文献   

13.
A Vaidya spacetime is considered for gravitational collapse of a type II fluid in the context of the Rastall theory of gravity. For a linear equation of state for the fluid profiles, the conditions under which the dynamical evolution of the collapse can give rise to the formation of a naked singularity are examined. It is shown that depending on the model parameters, strong curvature, naked singularities would arise as exact solutions to the Rastall's field equations. The allowed values of these parameters satisfy certain conditions on the physical reliability, nakedness, and the curvature strength of the singularity. It turns out that Rastall gravity, in comparison to general relativity, provides a wider class of physically reasonable spacetimes that admit both locally and globally naked singularities.  相似文献   

14.
Kishor D. Patil 《Pramana》2003,60(3):423-431
We analyze here the gravitational collapse of higher-dimensional charged-Vaidya spacetime. We show that singularities arising in a charged null fluid in higher dimension are always naked violating at least strong cosmic censorship hypothesis (CCH), though not necessarily weak CCH. We show that earlier conclusions on the occurrence of naked singularities in four-dimensional case can be extended essentially in the same manner in 5D case also  相似文献   

15.
The gravitational collapse of a massless scalar field with a self-interaction term λφ~4 in anti-de Sitter space is investigated.We numerically investigate the effect of the self-interaction term on the critical amplitudes,forming time of apparent horizon,stable island,and energy transformation.The results show that a positiveλsuppresses the formation of black hole,while a negativeλenhances the process.We define two susceptibilities to characterize the effect of the self-interaction on the black hole formation,and find that near the critical amplitude,there exists a universal scaling relation with the critical exponentα≈0.74 for the time of black hole formation.  相似文献   

16.
In this paper, the real scalar field equation in Schwarzschild-de Sitter spacetime is solved numerically with high precision. A method called polynomial approximation is introduced to derive the relation between the tortoise coordinate x and the radius r. This method is different from the tangent approximation [1] and leads to more accurate results. The Nariai black hole is then discussed in details. We find that the wave function is harmonic only near the horizons as I. Brevik and B. Simonsen [1] found. However the wave function is not harmonic in the region of the potential peak, with amplitude increasing instead. Furthermore, we also find that, when the cosmological constant decreases, the potential peak increases, and the maximum wave amplitude increases.  相似文献   

17.
We comment on recently proposed dissipative inflationary models. It is shown that the strength of the inflationary expansion is related to a specific combination of thermodynamic variables which is known to measure the instability of self-gravitating dissipative systems.  相似文献   

18.
In the present paper, compact expressions are derived for the probability of photon emission by a scalar particle and for the probability of creating pairs of scalar particles in an arbitrary plane electromagnetic wave field. Based on these general expressions, the amplitude of elastic scattering of a scalar particle and the amplitude of elastic scattering of a photon are derived by the method of dispersion relations (in the first-order approximation for the fine-structure constant 0 = e 2/4). The real components of these amplitudes determine the radiative corrections for particle masses in the examined fields. Some particular cases of the plane wave field are examined. In particular, the above-indicated amplitudes in the external electromagnetic field being a superposition of a constant crossed field and a plane elliptically polarized electromagnetic wave propagating along the direction orthogonal to the magnetic and electric components of the constant crossed field are investigated. The amplitude of elastic scattering of a scalar particle in an arbitrary plane electromagnetic wave field is also obtained by direct calculations of the corresponding mass operator of the scalar particle in this field.  相似文献   

19.
We study the collapse process of a homogeneous perfect fluid (in FLRW background) with a barotropic equation of state in Brans–Dicke (BD) theory in the presence of phase space deformation effects. Such a deformation is introduced as a particular type of non-commutativity between phase space coordinates. For the commutative case, it has been shown in the literature (Scheel, 1995), that the dust collapse in BD theory leads to the formation of a spacetime singularity which is covered by an event horizon. In comparison to general relativity (GR), the authors concluded that the final state of black holes in BD theory is identical to the GR case but differs from GR during the dynamical evolution of the collapse process. However, the presence of non-commutative effects influences the dynamics of the collapse scenario and consequently a non-singular evolution is developed in the sense that a bounce emerges at a minimum radius, after which an expanding phase begins. Such a behavior is observed for positive values of the BD coupling parameter. For large positive values of the BD coupling parameter, when non-commutative effects are present, the dynamics of collapse process differs from the GR case. Finally, we show that for negative values of the BD coupling parameter, the singularity is replaced by an oscillatory bounce occurring at a finite time, with the frequency of oscillation and amplitude being damped at late times.  相似文献   

20.
It is shown that in transitively self-similar spatially homogeneous tilted perfect fluid models the symmetry vector is not normal to the surfaces of spatial homogeneity. A direct consequence of this result is that there are no self-similar Bianchi VIII and IX tilted perfect fluid models. Furthermore the most general Bianchi VIII and IX spacetime which admits a four dimensional group of homotheties is given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号