首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
刘大江  陈教芳 《物理学报》1966,22(2):183-187
本文叙述用脉冲饱和法测量自旋-晶格弛豫时间的实验及其结果。在显示方面使用了倍频同步法以产生基线,便于读取T1。测定了红宝石Cr3+离子的弛豫时间,肯定在77°K时各种跃迁的T1大致相等,但浓度增高时T1降低。  相似文献   

2.
The electron spin-lattice and spin-spin phase relaxation measurements of Cu2+ ions in various crystals are reviewed and discussed. Examples of the Debye temperature determination from a wide temperature range measurements of the spin-lattice relaxation time T1 are shown. An influence of the Jahn-Teller dynamics on T1 is presented. The phase relaxation described by the phase memory time TM is affected by temperature due to the spin packet width modulation by molecular motions. The TM is anisotropic in crystals and can be different for different hyperfine lines of an EPR spectrum.  相似文献   

3.
The contributions of different mechanisms of nuclear spin-lattice relaxation are experimentally separated for 69Ga and 71Ga nuclei in GaAs crystals (nominally pure and doped with copper and chromium), 23Na nuclei in a nominally pure NaCl crystal, and 27Al nuclei in nominally pure and lightly chromium-doped Al2O3 crystals in the temperature range 80–300 K. The contribution of impurities to spin-lattice relaxation is separated under the condition of additional stationary saturation of the nuclear magnetic resonance (NMR) line in magnetic and electric resonance fields. It is demonstrated that, upon suppression of the impurity mechanism of spin-lattice relaxation, the temperature dependence of the spin-lattice relaxation time T1 for GaAs and NaCl crystals is described within the model of two-phonon Raman processes in the Debye approximation, whereas the temperature dependence of T1 for corundum crystals deviates from the theoretical curve for relaxation due to the spin-phonon interaction.  相似文献   

4.
The spin-lattice relaxation rates for 1H and 39K nuclei in K3H(SO4)2 and KHSO4 single crystals, which are potential candidate materials for use in fuel cells, were determined as a function of temperature. The spin-lattice relaxation recovery of 1H can be represented for both crystals with a single exponential function, but cannot be represented by the Bloembergen-Purcell-Pound (BPP) function, so is not related to HSO4 motion. The recovery traces of 39K, which predominantly undergoes quadrupole relaxation, can be represented by a linear combination of two exponential functions. The temperature dependences of the relaxation rates for 39K can be described with a simple power law T1−1=αT2. The spin-lattice relaxation rates for the 39K nucleus in K3H(SO4)2 and KHSO4 crystals are in accordance with a Raman process dominated by a phonon mechanism.  相似文献   

5.
The nuclear quadrupole spin-lattice relaxation was studied in the range 4.2–300 K for single crystals of Bi4Ge3O12 doped with minor amounts (the tenth fractions of mol%) of paramagnetic atoms of Cr, Nd, and Gd. Unusual spin dynamic features were recently found for these crystals at room temperature: a dramatic (up to 8-fold) increase in the effective nuclear quadrupole spin-spin relaxation time T 2* occurred upon doping the pure Bi4Ge3O12 sample. Unlike T 2*, the effective spin-lattice relaxation time T 1* at room temperature differs insignificantly for both doped and pure samples. But at lower temperatures, the samples exhibit considerably different behavior of the spin-lattice relaxation with temperature, which is caused by different contributions to the relaxation process of the dopant paramagnetic atoms. The distinctive maximum in the temperature dependence of the spin-lattice relaxation time for the Nd-doped crystal is shown to result from the crystal electric field effects.  相似文献   

6.
The lifetimes of the R-lines from the 2 E level and the broad bands from the 4 T 2 level of Cr3+ ions in various garnet crystals vary with the energy separation between the 2 E and 4 T 2 levels, which change systematically with the composition of host crystal. The trend of the Cr3+ lifetimes, as well as their temperature dependences in garnet crystals, is explained by zero-point vibration and phonon-assisted tunnelling between the 2 E and 4 T 2 states of Cr3+ ion.  相似文献   

7.
Magnetic properties of the organic conductor κ-(BETS)2Mn[N(CN)2]3 above and below the temperature of the metal-insulator transition that occurs at T MI ≈ 25 K are studied by 1H NMR. The proton spectrum is shown to be determined by the static dipolar fields from Mn2+ localized moments, while the 1H spin-lattice relaxation is dominated by fluctuating fields from Mn2+ electrons. The NMR data, both static (the spectra) and dynamic (the spin-lattice relaxation), indicate the freezing of Mn2+ moments into a short-range or an incommensurate long-range antiferromagnetic order below T MI.  相似文献   

8.
CsZnCl3 single crystals were grown by the slow evaporation method, and the spin-lattice relaxation rates and resonance lines of the 133Cs nuclei in the resulting crystals were investigated using FT NMR spectrometry. The temperature dependence of the relaxation rate of the 133Cs nuclei in the CsZnCl3 crystals was found to be continuous near TC (=366 K), and was not affected by this phase transition. Our results for CsZnCl3 are compared with those obtained previously for other CsBCl3 (B=Mn, Cu, and Cd) perovskite crystals. The Cs relaxation time of CsCdCl3 is longer than that of CsMnCl3. The differences between the atomic weights of Mn, Cu, Zn, and Cd are responsible for the differences between the spin-lattice relaxation times of these single crystals. The influence of paramagnetic ions is also important in these crystals. The differences between the spin-lattice relaxation times of these crystals could also be due to differences between the electron structures of their metal ions, in particular the structures of the d electrons.  相似文献   

9.
The variations with temperature of the relaxation mechanisms of the 9Be, 27Al, and 29Si nuclei in emerald (Be3Al2Si6O18:Cr3+) single crystals were investigated by using a pulse NMR spectrometer. The values of the spin-lattice relaxation rates for the three nuclei are different, and these differences are attributed to the differences between their Larmor frequencies and their local nuclear environments. The relaxation rates of the 9Be and 27Al nuclei undergo no abrupt changes within the temperature range 180-400 K, which indicates that there are no phase transitions within this temperature range. The spin-lattice relaxation rates of 9Be and 27Al were found to be proportional to temperature. Therefore, the nuclear spin-lattice relaxation processes of these two nuclei proceed via single-phonon processes.  相似文献   

10.
The impurity and lattice contributions to the spin-lattice relaxation of Al27 nuclei in nominally pure and lightly chromium-doped corundum (Al2O3) crystals are separated experimentally under the conditions of additional stationary resonance magnetic saturation of a pulsed NMR signal. The relaxation time T i lat due to the lattice mechanism of the spin-phonon interaction is determined. Fiz. Tverd. Tela (St. Petersburg) 39, 1041–1043 (June 1997)  相似文献   

11.
The luminescence of Ca2GeO4: Cr4+ single crystals at wavelengths in the range of 1.3 μm upon excitation with a 1-μ m semiconductor laser is investigated in the temperature range up to 573 K. At T<110 K, the Ca2GeO4: Cr4+ crystals are characterized by the electron paramagnetic resonance, which is attributed to the Cr4+ ions substituted for Ge4+ ions. The components of the g tensor and its principal axes are determined. It is revealed that the Cr4+ impurity centers in calcium germanate affect the crystal symmetry to a lesser degree compared to Cr4+ ions in forsterite. The observed deviation of the temperature dependence of the electron paramagnetic resonance from the Curie law is explained by the transition to the excited state with a low activation energy, as is the case in impurity 3d ions in diamond-like semiconductors. The inference is made that the giant effective degeneracy multiplicity of the excited state is associated with the initiation of soft phonon modes in the crystal upon excitation of the defect.  相似文献   

12.
Low-temperature luminescence spectra of stoichiometric Cr:LiNbO3, congruent Cr:LiNbO3 and congruent Cr,Mg:LiNbO3 were studied. Dominant low-field and minor high-crystal-field optical centers are the Cr3+ impurity ions that preferentially occupy Li+ sites (CrLi) in the Cr:LiNbO3 crystals. Low-field centers related to Cr3+ substitution of Nb5+ (CrNb) occur in addition to CrLi in co-doped Cr,Mg:LiNbO3 samples. Application of high hydrostatic pressure leads to the transformation of dominant Cr3+ centers from low- to high-field type due to strong pressure-induced blue shift of the 4 T 2 state, resulting in its crossing with the 2 E state of Cr3+. This level-crossing effect was observed for the dominant Cr3+ Li and Cr3+ Nb centers at pressures that correlate well with estimations based on the 4 T 2-2 Eenergy gap (230 cm-1 and 1160 cm-1) and on the rate of their pressure-induced change (14.35 and 11.4 cm-1/kbar, respectively). We also studied inhomogeneous broadeningof the 2 E?4 A 2transitions at ambient pressure for the minor high-field “defect” Cr3+ Li centers in congruent LiNbO3. A fine structure in the spectral response of these centers was observed. The obtained results are discussed on the basis of a microscopic hierarchic model for perturbed Cr3+ ions in the LiNbO3 lattice. Received: 25 June 2001 / Published online: 2 November 2001  相似文献   

13.
EPR of Gd3+ doped in Ce2M3(NO3)12.24H2O (M″ = Mg, Zn, Co) single crystals has been studied at various temperatures from room temperature to 77 K using ∼ 9.45 GHz EPR spectrometer. The observation of resolved Gd3+ spectra at room temperature in Ce3Co2(NO3)12.24H2O has been interpreted in terms of a random modulation of the interaction between the Gd3+ and the Co2+ ions by the rapid spin-lattice relaxation of Co2+ ions. It is found that the effective spin-lattice relaxation time T1T−n where n = 1.85 (Bz axis) and n = 1.75 (Bz axis) if 103 < T < 283 K.  相似文献   

14.
Cross-relaxation, which occurs when a V3+ transition is resonant with a monitored Cr3+ transition, leads to a marked reduction of the spin-lattice relaxation time of Cr3+ in Al2O3. Measurements and an analysis of the temperature dependence of this effect give a value of 8.34 ± 0.49 cm?1 for the zero-field splitting of V3+, an ion which is strongly coupled to the lattice.  相似文献   

15.
Emission Mössbauer Spectroscopy following the implantation of radioactive precursor isotope 57Mn+ (T 1/2= 1.5 min) into ZnO single crystals at ISOLDE/CERN shows that a large fraction of 57Fe atoms produced in the 57Mn beta decay is created as paramagnetic Fe3+ with relatively long spin-lattice relaxation times. Here we report on ZnO pre-implanted with 56Fe to fluences of 2×1013, 5×10 13 and 8 × 1013 ions/cm2 in order to investigate the dependence of the paramagnetic relaxation rate of Fe3+ on fluence. The spectra are dominated by magnetic features displaying paramagnetic relaxation effects. The extracted spin-lattice relaxation rates show a slight increase with increasing ion fluence at corresponding temperatures and the area fraction of Fe3+ at room temperature reaches a maximum contribution of 80(3)% in the studied fluence range.  相似文献   

16.
The spin-lattice relaxation times for Nd3+ ions in yttrium-aluminum garnets (YAG) and for Yb3+ ions in CaF2 in the low-temperature range have been measured. For the first system the temperature dependence of the relaxation rate is determined to a great extent by the method of sample preparation. For samples grow by the method of the horizontally oriented crystallization the dependence is described asT 1 ?1 =AT n ,n ? 4.7, which is an evidence of an influence of local structure disordering on the relaxation. The temperature dependence of the relaxation rate in CaF2:Yb is also “anomalous”:T 1 ?1 =AT 3.3. The results are compared with the previous data on the relaxation in similar systems, and with other cases of observation of “anomalous” temperature dependences. Different manifestations of the local crystal defects in spin-lattice relaxation are discussed.  相似文献   

17.
Nuclear magnetic resonance (NMR) data and the spin–lattice relaxation times, T1, of 69Ga and 71Ga nuclei in a β-Ga2O3:Cr3+ single crystal were obtained using FT NMR spectrometry. Four sets of NMR spectra for 69Ga (I = 3/2) and 71Ga (I = 3/2) were obtained in the crystallographic planes. The 69Ga and 71Ga nuclei each had two chemically inequivalent GaI and GaII centers. Each of the 69Ga and 71Ga isotopes yielded two different central NMR resonance lines originating from GaI and GaII sites. The nuclear quadrupole coupling constants and asymmetry parameters of 69GaI, 69GaII, 71GaI, and 71GaII centers in a β-Ga2O3:Cr3+ crystal were obtained. Analysis of the EFG tensor principal axes (PAs) for Ga nuclei and the ZFS tensor PAs for the Cr3+ ion confirmed that the Cr3+ paramagnetic impurity ion substitutes for the Ga3+ ion in the oxygen octahedron. In addition, the temperature dependencies of the 69Ga and 71Ga relaxation rates were consistent with Raman processes, as T1−1 ∝ T2. Even though the Cr3+ impurities are paramagnetic, the relaxations were dominated by electric quadrupole interactions of the nuclear spins in the temperature range investigated.  相似文献   

18.
The 1H NMR line-width and spin-lattice relaxation time T1 of TSCC single crystals were studied. Variations in the temperature dependence of the spin-lattice relaxation time were observed near 65 and 130 K, indicating drastic alterations of the spin dynamics at the phase transition temperatures. The changes in the temperature dependence of T1 near 65 and 130 K correspond to phase transitions of the crystal. The anomalous decrease in T1 around 130 K is due to the critical slowing down of the soft mode. The abrupt change in relaxation time at 65 K is associated with a structural phase transition. The proton spin-lattice relaxation time of this crystal also has a minimum value in the vicinity of 185 K, which is governed by the reorientation of the CH3 groups of the sarcosine molecules. From this result, we conclude that the two phase transitions at 65 and 130 K can be discerned from abrupt variations in the 1H NMR relaxation behavior, and that 1H nuclei play important roles in the phase transitions of the TSCC single crystal.  相似文献   

19.
The35C1-NQR frequency (VQ), nuclear quadrupole spin-lattice relaxation time (T1Q),1H-NMR second moment (M 2), nuclear magnetic spin-lattice relaxation time (T 1) and spin-lattice relaxation time in rotating frame (T 1p ) were measured for polycrystalline clofibric acid (drug) as a function of temperature. Hindered rotation of two dynamically inequivalent methyl groups and the phenyl ring was detected, the relevant activation energies were determined. The rotations are discussed in detail.  相似文献   

20.
The spin-lattice relaxation rates of 1H and 39K nuclei in KHSeO4 crystals were studied in the temperature range 160-400 K. The spin-lattice relaxation recovery of 1H nucleus in this crystal can be represented with a single exponential function, and the relaxation T1−1 curve of 1H can be represented with the Bloembergen-Purcell-Pound (BPP) function. The relaxation process of 39K with dominant quadrupole relaxation can be described by a linear combination of two exponential functions. T1−1 for the 39K nucleus was found to have a very strong temperature dependence, T1−1=βT7. Rapid variations in relaxation rates are associated with critical fluctuations in the electronic spin system. The T7 temperature dependence of the Raman relaxation rate is shown here to be due to phonon-magnon coupling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号