首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
A phase-locked frequency comb in the near infrared is demonstrated with a mode-locked, erbium-doped, fiber laser whose output is amplified and spectrally broadened in dispersion-flattened, highly nonlinear optical fiber to span from 1100 to >2200 nm. The supercontinuum output comprises a frequency comb with a spacing set by the laser repetition rate and an offset by the carrier-envelope offset frequency, which is detected with the standard f-to-2f heterodyne technique. The comb spacing and offset frequency are phase locked to a stable rf signal with a fiber stretcher in the laser cavity and by control of the pump laser power, respectively. This infrared comb permits frequency metrology experiments in the near infrared in a compact, fiber-laser-based system.  相似文献   

2.
Holman KW  Jones DJ  Ye J  Ippen EP 《Optics letters》2003,28(23):2405-2407
We have performed detailed studies on the dynamics of a frequency comb produced by a mode-locked laser diode (MLLD). Orthogonal control of the pulse repetition rate and the pulse-to-pulse carrier-envelope phase slippage is achieved by appropriate combinations of the respective error signals to actuate the diode injection current and the saturable absorber bias voltage. Phase coherence is established between the MLLD at 1550 nm and a 775-nm mode-locked Ti:sapphire laser working as part of an optical atomic clock.  相似文献   

3.
We present a detailed investigation of the noise properties of an optical frequency comb generated from a femtosecond diode-pumped solid-state laser operating in the 1.5-??m spectral region. The stabilization of the passively mode-locked Er:Yb:glass laser oscillator, referred to as ERGO, is achieved using pump power modulation for the control of the carrier envelope offset (CEO) frequency and by adjusting the laser cavity length for the control of the repetition rate. The stability and the noise of the ERGO comb are characterized in free-running and in phase-locked operation by measuring the noise properties of the CEO, of the repetition rate, and of a comb line at 1558?nm. The comb line is analyzed from the heterodyne beat signal with a cavity-stabilized ultra-narrow-linewidth laser using a frequency discriminator. Two different schemes to stabilize the comb to a radio-frequency (RF) reference are compared. The comb properties (phase noise, frequency stability) are limited in both cases by the RF oscillator used to stabilize the repetition rate, while the contribution of the CEO is negligible at all Fourier frequencies, as a consequence of the low-noise characteristics of the CEO-beat. A?linewidth of ??150?kHz and a fractional frequency instability of 4.2×10?13 at 1?s are obtained for an optical comb line at 1558?nm. Improved performance is obtained by stabilizing the comb to an optical reference, which is a cavity-stabilized ultra-narrow linewidth laser at 1558?nm. The fractional frequency stability of 8×10?14 at 1?s, measured in preliminary experiments, is limited by the reference oscillator used in the frequency comparison.  相似文献   

4.
张炜  韩海年  滕浩  魏志义 《中国物理 B》2009,18(3):1105-1108
This paper presents a Kerr-lens mode-locked Ti:sapphire laser at the repetition rate of 525 MHz, stable laser pulse as short as 10 fs with average output power of 480 mW is obtained. By injecting the pulse into photonics crystal fibre, octave-spanning spectrum covered from 500 to 1050 nm is generated, carrier-envelope phase frequency with signal-to-noise ratio of 31dB is measured, which paves the way for the generation of a compact frequency comb.  相似文献   

5.
徐琴芳  尹默娟  孔德欢  王叶兵  卢本全  郭阳  常宏 《物理学报》2018,67(8):80601-080601
提出一种结合注入锁定技术的主动滤波放大方法,将光梳直接注入锁定至光栅外腔半导体激光器,产生窄线宽激光光源,该光源可以用于锶原子光钟二级冷却.实验中,将中心波长为689 nm,带宽为10 nm的光梳种子光源注入689 nm光栅式外腔半导体激光器,通过半导体增益光谱与半导体光栅外腔,从飞秒光梳的多个纵模梳齿中挑选出一个纵模模式来进行增益放大,再通过模式竞争,实现单纵模连续光输出;同时,光梳的重复频率锁定在线宽为赫兹量级的698 nm超稳激光光源上,因此,注入锁定后输出的窄线宽激光也继承了超稳激光光源的光谱特性.利用得到的输出功率为12 mW的689 nm窄线宽激光光源实现了88Sr原子光钟的二级冷却过程,最终获得温度为3μK,原子数约为5×10~6的冷原子团.该方法可拓展至原子光钟其他光源的获得,从而实现原子光钟的集成化和小型化.  相似文献   

6.
We demonstrate a self-referenced, octave-spanning, mode-locked Ti:sapphire laser with a scalable repetition rate (550 MHz - 1.35 GHz). We use the frequency comb output of the laser, without additional broadening in optical fiber, for simultaneous measurements against atomic optical standards at 534, 578, 563, and 657 nm and to stabilize the laser offset frequency.  相似文献   

7.
We describe the detection and stabilization of the carrier envelope offset (CEO) frequency of a diode-pumped Yb:KYW (ytterbium-doped potassium yttrium tungstate) femtosecond oscillator that is spectrally centered at 1033 nm. The system consists of a diode-pumped, passively mode-locked femtosecond laser that produces 290 fs pulses at a repetition rate of 160 MHz. These pulses are first amplified, spectrally broadened and temporally compressed to 80 fs, and then launched into microstructured fiber to produce an octave-spanning spectrum. An f-2f nonlinear interferometer is employed with the broadened spectrum to detect and stabilize the CEO frequency through feedback to the pump laser current. These results demonstrate that such a Yb-doped tungstate laser can provide an efficient, compact, high-repetition-rate optical frequency comb with coverage from 650–1450 nm.  相似文献   

8.
We have used the comb of optical frequencies emitted by a mode-locked laser as a ruler to measure differences of as much as 20 THz between laser frequencies. This is to our knowledge the largest gap measured with a frequency comb, with high potential for further improvements. To check the accuracy of this approach we show that the modes are distributed uniformly in frequency space within the experimental limit of 3.0 parts in 10(17) . By comparison with an optical frequency comb generator we have verified that the mode separation equals the pulse repetition rate within the experimental limit of 6.0 parts in 10(16).  相似文献   

9.
This work demonstrates a semi-automatic optical frequency counter based on two mode-locked fiber laser combs. The mode number of the comb line involved in the optical frequency measurement is determined by operating the two laser combs at three different repetition rates, with two of them similar enough to have the same mode number of the beating comb lines. The determination of the mode number is independent of the frequency fluctuation of the laser under measurement. The whole measurement process was automated, except for the frequency stabilization of the laser combs and the optimization of the beat signal–to–noise ratio.  相似文献   

10.
Lead sulfide (PbS) is a nanomaterial with excellent optical and chemical properties, such as a narrow bandgap (0.37 eV), high thermal damage threshold, and high stability. Obviously, it is appropriate as a saturable absorber (SA) device for ultrafast photonics. However, PbS nanoparticles (NPs) as the SA of ultrashort harmonic mode-locked pulse still haven't been demonstrated at present. In this paper, the PbS NPs are made into an SA-device-based microfiber by optical deposition method and connected in an integrated Erbium-doped fiber laser. And both characteristics and nonlinear optical properties of PbS NPs have been systemically investigated. A fundamental frequency mode-locked pulsed laser is proposed, whose central wavelength is 1560 nm, and the pulse width is 1 ps. In addition, high repetition rate operations are achieved, with a maximum repetition rate of 833 MHz. This is the first time that PbS NPs are used to generate 96th-order harmonic mode-locking, and the corresponding pulse duration is 987 fs. It is demonstrated that PbS NPs are a kind of SA photonic material with excellent performance. It can improve the communication capacity by applying fiber communication, and it has potential application value even in material processing and optical comb.  相似文献   

11.
We report a mode-locked Ti:sapphire femtosecond laser emitting 42 fs pulses at a 10 GHz repetition rate. When operated with a spectrally integrated average power greater than 1 W, the associated femtosecond laser frequency comb contains approximately 500 modes, each with power exceeding 1 mW. Spectral broadening in nonlinear microstructured fiber yields comb elements with individual powers greater than 1 nW over approximately 250 nm of spectral bandwidth. The modes of the emitted comb are resolved and imaged with a simple grating spectrometer and digital camera. Combined with absorption spectroscopy of rubidium vapor, this approach permits identification of the mode index and measurement of the carrier envelope offset frequency of the comb.  相似文献   

12.
We report a mode-locked Ti:sapphire femtosecond laser with 5GHz repetition rate. Spectral broadening of the 24 fs pulses in a microstructured fiber yields an octave-spanning spectrum and permits self-referencing and active stabilization of the emitted femtosecond laser frequency comb (FLFC). The individual modes of the 5 GHz FLFC are resolved with a high-resolution spectrometer based on a virtually imaged phased array spectral disperser. Isolation of single comb elements at a microwatt average power level is demonstrated. The combination of the high-power, frequency-stabilized 5 GHz laser and the straightforward resolution of its many modes will benefit applications in direct frequency comb spectroscopy. Additionally, such a stabilized FLFC should serve as a useful tool for direct mode-by-mode Fourier synthesis of optical waveforms.  相似文献   

13.
We report on a passive cavity-enhanced Yb-fiber laser frequency comb generating 230 MW of peak power (3 kW of average power) at a 136 MHz pulse repetition rate. The intracativy peak intensity of 3 x 10(14) W/cm2 for the 95 fs pulse is sufficient to ionize noble gases, such as Xe, Kr, or Ar. The laser system is based on a mode-locked Yb-fiber similariton oscillator in conjunction with a cladding-pumped chirped-pulse fiber amplifier. After recompression, 75 fs duration pulses at a 13.1 W average power are obtained. These pulses are then coherently added inside a passive ring cavity by controlling the fiber oscillator's pulse repetition rate and carrier-envelope offset frequency. This system is well suited for studying high-field phenomena at very high pulse repetition rates.  相似文献   

14.
We demonstrate the generation of phase-coherent frequency combs in the vacuum utraviolet spectral region. The output from a mode-locked laser is stabilized to a femtosecond enhancement cavity with a gas jet at the intracavity focus. The resulting high-peak power of the intracavity pulse enables efficient high-harmonic generation by utilizing the full repetition rate of the laser. Optical-heterodyne-based measurements reveal that the coherent frequency comb structure of the original laser is fully preserved in the high-harmonic generation process. These results open the door for precision frequency metrology at extreme ultraviolet wavelengths and permit the efficient generation of phase-coherent high-order harmonics using only a standard laser oscillator without active amplification of single pulses.  相似文献   

15.
We have demonstrated a passively Q-switched and mode-locked Nd:YVO4 laser with an intracavity composite semiconductor saturable absorber (ICSSA). Stable Q-switched and mode-locked pulses with Q-switched envelope pulse duration of 180 ns and pulse repetition rate of 72 KHz have been obtained. The maximum average output power was 1.45 W at 8 W incident pump power. The repetition rate of the mode-locked pulses inside the Q-switched envelope was 154 MHz. Experimental results revealed that this ICSSA was suitable for Q-switched and mode-locked solid-state lasers.  相似文献   

16.
We report measurements of the response of a Kerr-lens mode-locked Ti:sapphire frequency comb to pump power modulation. For each setting of the laser, the comb expands and contracts about a particular fixed point in frequency. We measured this fixed point and found that it is within 8% of our frequency comb’s center. In addition, we found that as we shift the comb’s center frequency, the fixed point follows to some extent. It follows that modulating the pump power mostly affects the comb’s group velocity, i.e., the repetition rate. PACS 42.60.Fc; 42.62.Eh; 42.65.Hw  相似文献   

17.
We experimentally demonstrate pulse energy enhancement in an all-fiber passively mode-locked laser operating in the large normal dispersion regime. By increasing the laser cavity length as well as its net cavity dispersion, the proposed laser, which is mode-locked by nonlinear polarization rotation, generates highly chirped dissipative solitons with pulse energies up to 9.4 nJ. The fundamental repetition rate is 2.3 MHz, and the pulse duration is 35 ps. Such low repetition rate as well as wide pulse width makes this mode-locked all-fiber laser a suitable oscillator to directly seed a fiber amplifier, which can be used as compact sources for high-power applications.  相似文献   

18.
Ye J  Hall JL  Diddams SA 《Optics letters》2000,25(22):1675-1677
We demonstrate that the stability of the current optical frequency comb generated by a Kerr-lens mode-locked femtosecond laser is limited by the microwave reference used for phase locking the comb spacing. Hence we implement precision frequency/phase control of the entire comb to the fundamental and second-harmonic frequencies of a stable cw laser without any external microwave reference. The stability of a cw iodine-stabilized laser is transferred to millions of comb lines (with an instability of 3 x 10(-13)) covering more than one octave of the optical frequency spectrum. In addition, the mode spacing of the comb can be used as a stable microwave frequency derived directly from a stable optical oscillator.  相似文献   

19.
Optical pulses are generated from a coupled-cavity quantum-dot (QD) laser consisting of a short QD-waveguide Fabry–Perot (F–P) cavity and three long external fiber Bragg grating (FBG) cavities. When the laser is biased at low operation current, the feedback from the external cavities dominates and laser pulses have a 1.01 THz repetition rate, determined by the equal frequency difference of the three FBGs. We are thus able to decouple the repetition rate of a mode-locked laser from the cavity length. With much higher bias current, the QD F–P cavity dominates and the repetition rate is switched to 43.8 GHz, defined by the length of the F–P cavity.  相似文献   

20.
We report measurement of the first carrier-envelope offset (CEO) frequency signal from a spectrally broadened ultrafast solid-state laser oscillator operating in the 1.5 μm spectral region. The f-to-2f CEO frequency beat signal is 49 dB above the noise floor (100-kHz resolution bandwidth) and the free-running linewidth of 3.6 kHz is significantly better than typically obtained by ultrafast fiber laser systems. We used a SESAM mode-locked Er:Yb:glass laser generating 170-fs pulses at a 75 MHz pulse repetition rate with 110-mW average power. It is pumped by one standard telecom-grade 980-nm diode consuming less than 1.5 W of electrical power. Without any further pulse compression and amplification, a coherent octave-spanning frequency comb is generated in a polarization-maintaining highly-nonlinear fiber (PM-HNLF). The fiber length was optimized to yield a strong CEO frequency beat signal between the outer Raman soliton and the spectral peak of the dispersive wave within the supercontinuum. The polarization-maintaining property of the supercontinuum fiber was crucial; comparable octave-spanning supercontinua from two non-PM fibers showed higher intensity noise and poor coherence. A stable CEO-beat was observed even with pulse durations above 200 fs. Achieving a strong CEO frequency signal from relatively long pulses with moderate power levels substantially relaxes the demands on the driving laser, which is particularly important for novel gigahertz diode-pumped solid-state and semiconductor lasers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号