首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

A carboxylate-containing pentasaccharide, methyl O-(β-d-galactopyranosyl)-(1→4)-O-(β-d-glucopyranosyl)-(1→6)-O-{3-O-[(S)-1-carboxyethyl]-β-d-galactopyranosyl-(1→4)-O}-(2-acetamido-2-deoxy-β-d-glucopyranosyl)-(1→3)-β-d-galactopyranoside (27) was synthesized by block condensation of suitably protected donors and acceptors. Phenyl 3-O-benzyl-4,6-di-O-chloroacetyl-2-deoxy-2-phthalimido-1-thio-β-d-glucopyranoside (17) was condensed with methyl 2,4,6-tri-O-benzyl-β-d-galactopyranoside (4) to afford a disaccharide, methyl O-(3-O-benzyl-4,6-di-O-chloroacetyl-2-deoxy-2-phthalimido-β-d-glucopyranosyl)-(1→3)-2,4,6-tri-O-benzyl-β-d-galactopyranoside (18). Removal of chloroacetyl groups gave 4,6-diol, methyl 0-(3-O-benzyl-2-deoxy-2-phthalimido-β-d-glucopyranosyl)-(1→3)-2,4,6-tri-O-benzyl-β-d-galactopyranoside (19), in which the primary hydroxy group (6-OH) was then selectively chloroacetylated to give methyl O-(3-O-benzyl-6-O-chloroacetyl-2-deoxy-2-phthalimido-β-d-glucopyranosyl)-(1→3)-2,4,6-tri-O-benzyl-β-d-galactopyranoside (20). This acceptor was then coupled with 2,4,6-tri-O-acetyl-3-O-[(S)-1-(methoxycarbonyl)ethyl]-α-d-galactopyranosyl trichloroacetimidate (14) to afford a trisaccharide, methyl O-{2,4,6-tri-O-acetyl-3-O-[(S)-l-(methoxycarbonyl)ethyl]-β-d-galactopyranosyl}-(1→4)-O-(3-O-benzyl-6-O-chloroacetyl-2-deoxy-2-phthalimido-β-d-glucopyranosyl)-(1→3)-2,4,6-tri-O-benzyl-β-d-galactopyranoside (21). Removal of the 6-O-chloroacetyl group in 21 gave 22, which was coupled with 4-O-(2,3,4,6-tetra-O-acetyl-β-d-galactopyranosyl)-2,3,6-tri-O-acetyl-α-d-glucopyranosyl trichloroacetimidate (23) to yield protected pentasaccharide 24. Standard procedures were used to remove acetyl groups and the phthalimido group, followed by N-acetylation, and debenzylation to yield pentasaccharide 27 and a hydrazide by-product (28) in a 5:1 ratio, respectively. Compound 27 contains a complete repeating unit of the capsular polysaccharide of type III group B Streptococcus in which terminal sialic acid is replaced by an (S)-1-carboxyethyl group.  相似文献   

2.
Two new triterpenoids and three 27-nor-triterpenoids were isolated from the stems (with bark) of Nauclea officinalis. Their structures were identified to be 2β,3β,19α,23-tetrahydroxy-urs-12-en-28-oic acid (1), 2β,3β,19α,23-tetrahydroxy-urs-12-en-28-O-[β-d-glucopyranosyl (1-2)-β-d-glucopyranosyl] ester (2), pyrocincholic acid 3β-O-α-l-rhamnopyranoside (3), pyrocincholic acid 3β-O-α-l-rhamnopyranosy1-28-O-β-d-glucopyranosyl ester (4), pyrocincholic acid 3β-O-α-l-rhamnopyranosy1-28-O-β-d-glucopyranosyl-(1-6)-β-d-glucopyranosyl ester (5) by spectroscopic methods including 1D, 2D NMR and HR-MS analyses. The cytotoxic activity of 15 against lung cancer A-549 cells was also investigated.  相似文献   

3.
Two new quercetin glycoside derivatives named quercetin-3-O-[2-O-trans-caffeoyl-α-l-rhamnopyranosyl-(1 → 6)-β-d-glucopyranoside] (1) and quercetin-3-O-[2-O-trans-caffeoyl-β-l-rhamnopyranosyl-(1 → 6)-β-d-glucopyranoside] (2) along with three known flavonoids, 5-hydroxy-6,7,3′,4′,5′-pentamethoxyflavone (3), 5,7-dihydroxy-8-methoxyflavone (4) and kaempferol 3-O-β-d-glucopyranoside (5), were isolated from the fruits of Gardenia jasminoides var. radicans. The structures of the new compounds were determined by means of extensive spectroscopic analysis (1D, 2D NMR and HR-ESI-MS), glycoside hydrolysis and sugar HPLC analysis after derivatisation. This is the first report on the isolation of a pair of compounds with α or β-l-rhamnopyranosyl configuration from plant and the first detail assignment of their NMR data.  相似文献   

4.
Two tetrameric arabinogalactans, β-D-galactopyranosyl-(1→6)-β-D-galactopyranosyl-(1→6)-[α-L-arabinofuranosyl-(1→3)]-D-galactopyranose (14) and α-L-arabinofuranosyl-(1→3)-β-D-galactopyranosyl-(1→6)-β-D-galactopyranosyl-(1→6)-D-galactopyranose (25), which are good candidates for CCRC-M7 epitope characterization, were synthesized efficiently using a convergent strategy. Migration of an acceptor acetyl group proved to be an obstacle to synthesis, but regioselective glycosylation or 4-O-benzyl protection of the acceptor circumvented this problem allowing efficient synthesis of the 1→6 linked target compounds.  相似文献   

5.
《合成通讯》2013,43(8):1219-1226
ABSTRACT

A facile synthesis of the trisaccharide α-D-mannopyranosyl-(1→2)-α-D-mannopyranosyl-(1→6)-α-D-mannopyranose and the tetrasaccharide α-D-mannopyranosyl-(1→2)-α-D-mannopyranosyl-(1→6)-α-D-mannopyranosyl-(1→6)-D-mannopyranose, the repeating units of fungal cell-wall polysaccharide from Microsporum gypseum and Trychophyton, was achieved using α-(1→2)-linked disaccharide imidate as the donor. The disaccharide imidate was prepared from the self-condensation of 3,4,6-tri-O-benzoyl-1,2-O-allyloxyethylidene-β-D-mannopyranose.  相似文献   

6.
A tetrasaccharide, α-D-mannopyranosyl-(1→2)-α-D-mannopyranosyl-(1→6)-α-D-mannopyranosyl-(1→6)-D-mannopyranose (1), the repeating unit of the cell-wall mannans of Microsporum gypseum and related species of Trychophyton, was synthesized using 6-O-acetyl-2,3,4-tri-O-benzoyl-α-D-mannopyranosyl trichloroacetimidate (5) and 2-O-acetyl-3,4,6-tri-O-benzoyl-α-D-mannopyranosyl trichloroacetimidate (13) as the glycosyl donors in “the inverse Schmidt” procedure.  相似文献   

7.
Abstract

The primary structure of an elicitor-active oligosaccharide, LN-3, prepared from partially hydrolyzed algal laminaran was determined by means of the analyses of glycosyl-linkage, fragments by acetolysis, and glycosyl-sequence. The elicitor-active oligosaccharide, LN-3, is a pyridylaminated hepta-β-d-glucoside which was shown to have the following linear structure: β-d-Glcp(1→6)-β-d-Glcp(1→3)-β-d-Glcp(1→3)-β-d-Glcp(1→3)-β-d-Glcp(1→6)-β-d-Glcp(1→3)-Glc-PA.  相似文献   

8.
A new caffeoylgluconic acid derivative, trans-caffeoyl-6-O-d-gluconic acid methyl ester (1), together with two known compounds named trans-caffeoyl-6-O-d-glucono-γ-lactone (2) and trans-caffeoyl-6-O-d-gluconic acid (3), was isolated from the nearly ripe fruits of Evodia rutaecarpa (Juss.) Benth.. These compounds were isolated by various separation methods associated with the UPLC-Q-TOF-MS technique. Their structures were elucidated on the basis of extensive spectroscopic methods.  相似文献   

9.
《合成通讯》2013,43(10):1707-1715
Abstract

A simple high-yielding procedure is described for the preparation of tri-O-acetyl-β-l-fucopyranosylformaldoxime (1) involving stannate(II)-mediated reduction of the readily accessible tri-O-acetyl-β-l-fucopyranosylnitromethane (3). The d-mannosyl, d-glucosyl, d-galactosyl, and d-xylosyl analogues 7–12 were prepared similarly. The structure of tetra-O-acetyl-β-d-mannopyranosylformaldoxime (7) was determined by X-ray crystallography.  相似文献   

10.
Radical C-glycosidation of racemic 5-exo-benzeneselenyl-6-endo-chloro-3-methylidene-7-oxabicyclo[2.2.1]heptan-2-one ((±)-2) with α-acetobromofucose (3) provided a mixture of α-C-fucosides that were reduced with NaBH4 to give two diastereomeric alcohols that were separated readily. One of them ((?)-6) was converted into (?)-methyl 2-acetamido-4-O-acetyl-2,3-dideoxy-3-C-(3′,4′,5′-tri-O-acetyl-2′,6′-anhydro-1′,7′-dideoxy-α-L-glycero-D-galacto-heptitol-1′-C-yl)-α -D-galactopyranuronate ((?)-11) and then into (?)-methyl 2-acetamido-2,3-dideoxy-3-C-(2′,6′-anhydro-1′,7′-dideoxy-α-L-glycero-D-galacto-heptitol-1′-C-yl)-β -D-galactopyranoside ((?)-1), a new α-C(1→3)-L-fucopyranoside of N-acetylgalactosamine. Its 1H NMR data shows that this C-disaccharide (α-L-Fucp-(1→3)CH2-β-D-GalNAc-OMe) adopts a major conformation in solution similar to that expected for the corresponding O-linked disaccharide, i.e., with antiperiplanar σ(C-3′,C-2′) and σ(C-1′,C-3) bonds.  相似文献   

11.
Six non-anomeric isourea derivatives of d-fructose (7, 8), d-glucose (9, 10), 6-deoxy-l-altrose (11) and l-rhamnose (12) were synthesized from the precursors 16 by a CuCl-catalyzed addition of a non-glycosidic OH-group to DCC and DIPC, respectively. Subsequently, the isoureido group of phenyl 2,3,4-tri-O-benzyl-6-O-(N,N′-dicyclohexylisoureido)-β-d-glucopyranoside (10) was replaced by an azido and a thioacetyl group, respectively, yielding the corresponding 6-deoxy-6-azido-d-glucopyranoside (13) and 6-deoxy-6-thioacetyl-d-glucopyranoside (14) in moderate to good yields.  相似文献   

12.
Abstract

Methyl α-D-fructofuranoside was transformed regioselectively into the corresponding 6-S-thioacetate in one step by use of the thio-Mitsunobu reaction. Reaction of the trimesylate derived from this thioacetate with sodium hydrogen carbonate led to the thietanosugar methyl 4,6-anhydro-1,3-di-O-mesyl-4-thio-α-D-tagatofuranoside. Methyl β-D-fructofuranoside gave the corresponding 6-S-thioacetate and, with excess thioacetic acid, the 1-S,6-S-bis-thioacetate. Whereas this mono-thioacetate did not yield a thietano derivative, the bis-thioacetate gave the bis-thietane methyl 1,3:4,6-dianhydro-1,4-dithio-β-D-sorbofuranoside with sodium hydrogen carbonate.  相似文献   

13.
Three new triterpenoid saponins, ardisicrenoside O (1), ardisicrenoside P (2) and ardisicrenoside Q (3) together with three known compounds, 3β,16α-dihydroxy-30-methoxy-28, 30-epoxy-olean-12-en, cyclamiretin A 3-O-β-d-glucopyranosyl-(1→2) -α-l-arabinopyranoside and cyclamiretin A 3-O-β-d-glucopyranosyl-(1→4) -α-l-arabinopyranoside were isolated from the roots of Ardisia crenata Sims. Their structures were determined by one- and two-dimensional NMR techniques, including HSQC, HMBC and TOCSY experiments, as well as acid hydrolysis and GC analysis. All isolates were evaluated for the cytotoxic activities on two human cancer cell lines and compounds 3, 5 and 6 showed significant cytotoxicity.  相似文献   

14.
Two new flavonol glycosides, brachysides C and D, together with three known flavonol glycosides, were isolated from the leaves of Caragana brachyantha. The structures of brachysides C and D were elucidated on the basis of detailed spectroscopic analysis as quercetin 5-O-[α-l-rhamnopyranosyl-(1 → 6)-β-d-glucopyranoside]-7-O-[α-l-rhamnopyranoside] and quercetin 5-O-[α-l-rhamnopyranosyl-(1 → 6)-β-d-glucopyranoside]-7-O-[α-l-rhamnopyranoside]-4′-O-[α-l-rhamnopyranoside], respectively. The presence of flavonol tetra- and triglycosides bearing a sugar moiety at position 5 was the first report from this genus Caragana.  相似文献   

15.
A new acylated kaempferol glycoside, kaempferol 3-O-α-l-rhamnopyranosyl-(1 → 6)-O-[β-d-glucopyranosyl-(1 → 2)-4-O-acetyl-α-l-rhamnopyranosyl-(1 → 2)]-β-d-galactopyranoside, has been isolated from the leaves of Tipuana tipu (Benth.) Lillo growing in Egypt, along with three known flavonol glycosides, kaempferol 3-O-rutinoside, quercetin 3-O-rutinoside (rutin) and kaempferol 3-O--l-rhamnopyranosyl-(1 → 6)]-[α-l-rhamnopyranosyl-(1 → 2]-β-d-glucopyranoside. Structure elucidation was achieved through different spectroscopic methods. Structure relationship with anti-inflammatory activity using carrageenin-induced rat paw oedema model is discussed.  相似文献   

16.
A new flavonoid, dhasingreoside (1) and seven known compounds, quercetin 3-O-β-d-galacturonopyranoside (2), quercetin 3-O-β-d-galactopyranoside (3), quercetin 3-O-β-d-glucuronopyranoside (4), quercetin 3-O-α-l-rhamnopyranoside (5), (–)-epicatechin (6), salicylic acid (7) and gaultherin (8), have been isolated from the shade-dried stems and leaves of Gaultheria fragrantissima, commonly known as ‘Dhasingre’ in Nepal. The structures were elucidated on the basis of physical, chemical and spectroscopic methods. Among known compounds, five compounds (36 and 8) were isolated for the first time from G. fragrantissima. In vitro antioxidant activity of all the isolated compounds was evaluated by 1,1-diphenyl-2-picrylhydrazyl free radical-scavenging assay. Dhasingreoside (1) and other compounds (26) showed significant free radical-scavenging activity.  相似文献   

17.
The pyranone, 1,5-anhydro-4-deoxy-d-glycero-hex-1-en-3-ulose (1) (ascopyrone P), has been synthesised in eight steps from d-glucose. The key steps were deacetylation of 3,6-di-O-acetyl-1,5-anhydro-d-glycero-hex-3-en-2-ulose (8) to give isomers and hydrates of 1,5-anhydro-4-deoxy-d-glycero-hex-3-en-2-ulose (9). Isomerisation of this mixture afforded 1,5-anhydro-4-deoxy-d-glycero-hex-1-en-3-ulose (1) (ascopyrone P) in a moderate yield.  相似文献   

18.
A new triterpenoid glycoside (1) was isolated from the methanol extract of the leaves and stems of Duranta repens L. (Verbenaceae) along with 14 known compounds consisting of eight triterpenoids, four iridoids, one phenylethanoid glycoside and one flavonoid. The chemical structure of 1 was determined to be bayogenin 3-O-[β-D-glucopyranoside]-28-O-[α-L-rhamnopyranosyl-(1→5)-O-β-D-apiofuranosyl-(1→4)-O-α-L-rhamnopyranosyl-(1→2)-O-α-L-arabinopyranosyl] ester, based on spectroscopic data. In addition, the inhibitory effects of the isolates on lipoxygenase activity were examined. Among them, acteoside and apigenin resulted in 94 ± 3.6% and 82 ± 4.7% inhibition, respectively, at 0.5 mM.  相似文献   

19.
Starting from 6-O-tert-butyldimethylsilyl-2,3;4,5-di-O-isopropylidenealdehydo-D-galactose (1), the carbon backbone elongated GDP-L-fucose analogue 15 bearing a chromophore tag at the end of a spacer was synthesized. Additionally, the analogues of 3-L-fucosyllactose (29) and 2′-L-fucosyllactose (36), where the fucosyl moiety is marked by a five atom alkyl chain at C-5, were prepared as labeled oligosaccharides of human milk.  相似文献   

20.
Abstract

Reaction of 2,3:4,5-di-O-isopropylidene-β-d-arabino--hexos-2-ulo-2,6-pyranose (1) with (methoxycarbonylmethylene)triphenylphosphorane in either dichloromethane or methanol gave methyl (E)-2,3-dideoxy-4,5:6,7-di-O-isopropylidene-β-d-arabino-oct-2-ene-4-ulo-4,8-pyranosonate (2) or a 1:2.3 mixture of 2 and its Z-isomer (3), respectively. Bishydroxylation of 2 with osmium tetraoxide gave a mixture of methyl 4,5:6,7-di-O-isopropylidene-β-d-glycero-d-galacto- (4) and -d-glycero-d-ido-oct-4-ulo-4,8-pyranosonate (5) which were carefully resolved by column chromatography. Compound 4 was transformed into its 2,3-di-O-methyl derivative (6) which was deacetonated to 7 and subsequently degraded to dimethyl 2,3-di-O-methyl-(+)-L-tartrate (8). On the other hand, acetonation of a mixture of 4 and 5 gave the corresponding tri-O-isopropylidene derivatives (9) and (10). Compounds 4 and 5 were reduced with LiAlH4 to the related 4,5:6,7-di-O-isopropylidene-β-d-glycero-d-galacto- (11) and β-d-glycero-d-ido-oct-4-ulo-4,8-pyranose (12). Treatment of 11 and 12 with acetone/PTSA/CuSO4 only produced the acetonation at the C-2,3 positions. Finally, compounds 11 and 12 were deacetonated to the corresponding D-glycero-d-galacto- (15) and D-glycero-d-ido-oct.-4-ulose (16).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号