首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
In this paper, an inverse source problem of time-fractional diffusion-wave equation on spherically symmetric domain is considered. In general, this problem is ill-posed. Landweber iterative method is used to solve this inverse source problem. The error estimates between the regularization solution and the exact solution are derived by an a-priori and an a-posteriori regularization parameters choice rules. The numerical examples are presented to verify the efficiency and accuracy of the proposed methods.  相似文献   

2.
This paper discusses an application of partial tensor Golub–Kahan bidiagonalization to the solution of large-scale linear discrete ill-posed problems based on the t-product formalism for third-order tensors proposed by Kilmer and Martin (M. E. Kilmer and C. D. Martin, Factorization strategies for third order tensors, Linear Algebra Appl., 435 (2011), pp. 641-658). The solution methods presented first reduce a given (large-scale) problem to a problem of small size by application of a few steps of tensor Golub–Kahan bidiagonalization and then regularize the reduced problem by Tikhonov's method. The regularization operator is a third-order tensor, and the data may be represented by a matrix, that is, a tensor slice, or by a general third-order tensor. A regularization parameter is determined by the discrepancy principle. This results in fully automatic solution methods that neither require a user to choose the number of bidiagonalization steps nor the regularization parameter. The methods presented extend available methods for the solution for linear discrete ill-posed problems defined by a matrix operator to linear discrete ill-posed problems defined by a third-order tensor operator. An interlacing property of singular tubes for third-order tensors is shown and applied. Several algorithms are presented. Computed examples illustrate the advantage of the tensor t-product approach, in comparison with solution methods that are based on matricization of the tensor equation.  相似文献   

3.
In this paper different numerical methods for a two-phase free boundary problem are discussed. In the first method a novel iterative scheme for the two-phase membrane is considered. We study the regularization method and give an a posteriori error estimate which is needed for the implementation of the regularization method. Moreover, an efficient algorithm based on the finite element method is presented. It is shown that the sequence constructed by the algorithm is monotone and converges to the solution of the given free boundary problem. These methods can be applied for the one-phase obstacle problem as well.  相似文献   

4.
A novel dual approach to the problem of optimal correction of first-kind improper linear programming problems with respect to their right-hand sides is proposed. It is based on the extension of the traditional Lagrangian by introducing additional regularization and barrier components. Convergence theorems are given for methods based on the augmented Lagrangian, an informal interpretation of the obtained generalized solution is suggested, and results of numerical experiments are presented.  相似文献   

5.
In this paper, we consider an inverse problem for a time-fractional diffusion equation in a one-dimensional semi-infinite domain. The temperature and heat flux are sought from a measured temperature history at a fixed location inside the body. We show that such problem is severely ill-posed and further apply a new regularization method to solve it based on the solution given by the Fourier method. Convergence estimates are presented under the a priori bound assumptions for the exact solution. Finally, numerical examples are given to show that the proposed numerical method is effective.  相似文献   

6.
研究了一类变系数椭圆方程的柯西问题,这类问题出现在很多实际问题领域.由于问题的不适定性,不可能通过经典的数值方法来求解上述问题,必须引入正则化手段.采用了一种修正吉洪诺夫正则化方法来求解上述问题.在一种先验和一种后验参数选取准则下,分别获得了问题的误差估计.数值例子进一步显示方法是稳定有效的.  相似文献   

7.
In this paper, the Cauchy problem for the Helmholtz equation is investigated. It is known that such problem is severely ill-posed. We propose a modified regularization method to solve it based on the solution given by the method of separation of variables. Convergence estimates are presented under two different a-priori bounded assumptions for the exact solution. Finally, numerical examples are given to show the effectiveness of the proposed numerical method.  相似文献   

8.
This paper deals with the problem of determining an unknown source which depends only on one variable in two-dimensional Poisson equation, with the aid of an extra measurement at an internal point. The problem is ill-posed in the sense that the solution (if it exists) does not depend continuously on the data. We obtain the regularization solution by the truncation method. For the regularization solution, the Hölder type stability estimate between the regularization solution and the exact solution is given. Numerical results are presented to illustrate the accuracy and efficiency of this method.  相似文献   

9.
考虑由扰动数据重构原函数的导数问题.基于L-广义解正则化理论,提出了一个新的磨光方法的框架.给出一个具体的求解前3阶导数的算法,其中正则化策略选择了一种改进的TSVD(truncated singular value decomposition)方法(典则TSVD方法).数值结果进一步验证了理论结果及新方法的有效性.  相似文献   

10.
本文研究了双调和方程柯西问题,这类是不适定的,即问题的解(如果存在)不连续依赖于测量数据.首先在精确解的先验假设下给出问题的条件稳定性结果.接着利用修正的Tikhonov正则化方法求解此不适定问题.在先验和后验正则化参数选取规则下,给出正则解和精确解之间的误差估计式.最后给出几个数值例子验证此正则化方法求解此类反问题的有效性.  相似文献   

11.
This paper is devoted to solve a backward problem for a time-fractional diffusion equation with variable coefficients in a general bounded domain by the Tikhonov regularization method. Based on the eigenfunction expansion of the solution, the backward problem for searching the initial data is changed to solve a Fredholm integral equation of the first kind. The conditional stability for the backward problem is obtained. We use the Tikhonov regularization method to deal with the integral equation and obtain the series expression of solution. Furthermore, the convergence rates for the Tikhonov regularized solution can be proved by using an a priori regularization parameter choice rule and an a posteriori regularization parameter choice rule. Two numerical examples in one-dimensional and two-dimensional cases respectively are investigated. Numerical results show that the proposed method is effective and stable.  相似文献   

12.
This paper is concerned with the Cauchy problem for the modified Helmholtz equation in an infinite strip domain 0 < x≤ 1, y ∈ R. The Cauchy data at x = 0 is given and the solution is then sought for the interval 0 < x ≤1. This problem is highly ill-posed and the solution (if it exists) does not depend continuously on the given data. In this paper, we propose a fourth-order modified method to solve the Cauchy problem. Convergence estimates are presented under the suitable choices of regularization parameters and the a priori assumption on the bounds of the exact solution. Numerical implementation is considered and the numerical examples show that our proposed method is effective and stable.  相似文献   

13.
In this paper, we investigate a problem of the identification of an unknown source on Poisson equation from some fixed location. A conditional stability estimate for an inverse heat source problem is proved. We show that such a problem is mildly ill‐posed and further present two Tikhonov‐type regularization methods (a generalized Tikhonov regularization method and a simplified generalized Tikhonov regularization method) to deal with this problem. Convergence estimates are presented under the a priori choice of the regularization parameter. Numerical results are presented to illustrate the accuracy and efficiency of our methods. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
We study the backward heat conduction problem in an unbounded region. The problem is ill-posed, in the sense that the solution if it exists, does not depend continuously on the data. Continuous dependence of the data is restored by cutting-off high frequencies in Fourier domain. The cut-off parameter acts as a regularization parameter. The discrepancy principle, for choosing the regularization parameter and double exponential transformation methods for numerical implementation of regularization method have been used. An example is presented to illustrate applicability and accuracy of the proposed method.  相似文献   

15.
This study is intended to provide a numerical algorithm for solving a one-dimensional inverse heat conduction problem. The given heat conduction equation, the boundary conditions, and the initial condition are presented in a dimensionless form. The numerical approach is developed based on the use of the solution to the auxiliary problem as a basis function. To regularize the resultant ill-conditioned linear system of equations, we apply the Tikhonov regularization method to obtain the stable numerical approximation to the solution.  相似文献   

16.
If a fractional program does not have a unique solution or the feasible set is unbounded, numerical difficulties can occur. By using a prox-regularization method that generates a sequence of auxiliary problems with unique solutions, these difficulties are avoided. Two regularization methods are introduced here. They are based on Dinkelbach-type algorithms for generalized fractional programming, but use a regularized parametric auxiliary problem. Convergence results and numerical examples are presented.  相似文献   

17.
We describe regularizing iterative methods for the solution of large ill-conditioned linear systems of equations that arise from the discretization of linear ill-posed problems. The regularization is specified by a filter function of Gaussian type. A parameter determines the amount of regularization applied. The iterative methods are based on a truncated Lanczos decomposition and the filter function is approximated by a linear combination of Lanczos polynomials. A suitable value of the regularization parameter is determined by an L-curve criterion. Computed examples that illustrate the performance of the methods are presented.  相似文献   

18.
This paper is devoted to discuss a multidimensional backward heat conduction problem for time‐fractional diffusion equation with inhomogeneous source. This problem is ill‐posed. We use quasi‐reversibility regularization method to solve this inverse problem. Moreover, the convergence estimates between regularization solution and the exact solution are obtained under the a priori and the a posteriori choice rules. Finally, the numerical examples for one‐dimensional and two‐dimensional cases are presented to show that our method is feasible and effective.  相似文献   

19.
This paper discusses the problem of determining an unknown source which depends only on one variable in two-dimensional Poisson equation from one supplementary temperature measurement at an internal point. The problem is ill-posed in the sense that the solution (if it exists) does not depend continuously on the data. The regularization solution is obtained by the modified regularization method. For the regularization solution, the Hölder type stability estimate between the regularization solution and the exact solution is given. Numerical results are presented to illustrate the accuracy and efficiency of this method.  相似文献   

20.
In this paper, we investigate an inverse problem of recovering the zeroth-order coefficient and fractional order simultaneously in a time-fractional reaction-diffusion-wave equation by using boundary measurement data from both of uniqueness and numerical method. We prove the uniqueness of the considered inverse problem and the Lipschitz continuity of the forward operator. Then the inverse problem is formulated into a variational problem by the Tikhonov-type regularization. Based on the continuity of the forward operator, we prove that the minimizer of the Tikhonov-type functional exists and converges to the exact solution under an a priori choice of regularization parameter. The steepest descent method combined with Nesterov acceleration is adopted to solve the variational problem. Three numerical examples are presented to support the efficiency and rationality of our proposed method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号