首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The antibiofilm and possible antiquorum sensing effects against the strain Pseudomonas aeruginosa PAO1 of five crude extracts of the freshwater bryozoan Hyalinella punctata (Hancock, 1850) were evaluated in vitro for the first time. H. punctata ethyl acetate extract (HpEtAc) exhibited the highest antibiofilm activity reducing the biofilm formation of P. aeruginosa PAO1 in the range of 80.63–88.13%. While all tested extracts reduced the twitching motility of the aforementioned bacterial strain, HpEtAc showed to be the most effective. Finally, at a concentration of 0.5 MIC, the same extract mostly inhibited the production of pyocyanin by P. aeruginosa PAO1 (71.53%). In comparison both with the positive controls used (streptomycin and ampicillin, 67.13 and 69.77%, respectively), HpEtAc was found to inhibit pyocyanin in a higher extent. An extensive chemical characterisation of this particular extract may result in isolation and identification of novel lead compounds targeting P. aeruginosa, an opportunistic human pathogen.  相似文献   

2.
The antimicrobial activity of five crude extracts of the freshwater bryozoan Pectinatella magnifica (Leidy, 1851) was evaluated in vitro for the first time. P. magnifica acetone extract exhibited the highest antibacterial activity (minimum inhibitory concentrations (MIC) 0.004–0.350 mg/mL and MBC 0.007–0.500 mg/mL), while its methanol extract showed the most promising antifungal activity (MIC 0.03–0.12 mg/mL and MFC 0.06–0.25 mg/mL). Furthermore, at a concentration of 0.25 MIC, the methanol extract reduced biofilm formation of the bacterial strain Pseudomonas aeruginosa PAO1 in a considerable extent (59.14%). FTIR spectra of the most active extracts indicate the presence of carbonyl compounds, long-chain alcohols and/or sterols. According to the experimental data obtained, P. magnifica methanol extract may be considered as a good resource of novel natural products with potent antibiofilm activity against the bacterium well known for its resistance.  相似文献   

3.
Anti-quorum sensing activity of the diterpene phytol was evaluated in vitro for the first time. This compound (at three sub-MIC concentrations – 0.5, 0.25 and 0.125 MIC, respectively) reduced the formation of Pseudomonas aeruginosa PAO1 biofilm in the range of 74.00–84.33% exhibiting higher activity than the both positive controls used, streptomycin and ampicillin. Phytol (0.5 MIC) also effectively reduced P. aeruginosa twitching and flagella motility. Indeed, the bacteria treated were incapable of producing a twitching zone and had almost round, smooth and regular colony edges. Finally, the tested compound (0.5 MIC) exhibited good P. aeruginosa pyocyanin inhibitory activity (51.94%) practically to the same extent as streptomycin (52.09%). According to the experimental data obtained, this phytol property may inspire design of medical foods targeting P. aeruginosa quorum sensing activity.  相似文献   

4.
Pseudomonas aeruginosa is an opportunistic pathogen causing life-threatening, hard-to-heal infections associated with the presence of a biofilm. Essential oils (EOs) are promising agents to combat pseudomonal infections because of the alleged antimicrobial activity of their volatile fractions and liquid forms. Therefore, the purpose of this paper was to evaluate the antibacterial efficacy of both volatile and liquid phases of seven EOs (thyme, tea tree, basil, rosemary, eucalyptus, menthol mint, lavender) against P. aeruginosa biofilm and planktonic cells with the use of a broad spectrum of analytical in vitro methods. According to the study results, the antibacterial activity of EOs in their liquid forms varied from that of the volatile fractions. Overall, liquid and volatile forms of rosemary EO and tea tree EO displayed significant antibiofilm effectiveness. The outcomes indicate that these particular EOs possess the potential to be used in the therapy of P. aeruginosa infections.  相似文献   

5.
Antimicrobial resistance is a growing concern in public health and current research shows an important role for bacterial biofilms in recurrent or chronic infections. New strategies, therefore, are necessary to overcome antimicrobial resistance, through the development of new therapies that could alter or inhibit biofilm formation. In this sense, antibiofilm natural products are very promising. In this work, a bioprospection of antimicrobial and antibiofilm extracts from Uruguayan soil bacteria and insect gut bacteria was carried out. Extracts from extracellular broths were tested for their ability to inhibit planktonic cell growth and biofilm formation. Genomic analysis of Bacillus cereus ILBB55 was carried out. All extracts were able to inhibit the growth of, at least, one microorganism and several extracts showed MICs lower than 500 µg mL−1 against microorganisms of clinical relevance (Staphylococcus aureus, Pseudomonas aeruginosa, and Enterobacter cloacae). Among the extracts evaluated for biofilm inhibition only ILBB55, from B. cereus, was able to inhibit, S. aureus (99%) and P. aeruginosa (62%) biofilms. Genomic analysis of this strain showed gene clusters similar to other clusters that code for known antimicrobial compounds. Our study revealed that extracts from soil bacteria and insect gut bacteria, especially from B. cereus ILBB55, could be potential candidates for drug discovery to treat infectious diseases and inhibit S. aureus and P. aeruginosa biofilms.  相似文献   

6.
Natural products derived from marine sponges have exhibited bioactivity and, in some cases, serve as potent quorum sensing inhibitory agents that prevent biofilm formation and attenuate virulence factor expression by pathogenic microorganisms. In this study, the inhibitory activity of the psammaplin-type compounds, psammaplin A (1) and bisaprasin (2), isolated from the marine sponge, Aplysinella rhax, are evaluated in quorum sensing inhibitory assays based on the Pseudomonas aeruginosa PAO1 lasB-gfp(ASV) and rhlA-gfp(ASV) biosensor strains. The results indicate that psammaplin A (1) showed moderate inhibition on lasB-gfp expression, but significantly inhibited the QS-gene promoter, rhlA-gfp, with IC50 values at 14.02 μM and 4.99 μM, respectively. In contrast, bisaprasin (2) displayed significant florescence inhibition in both biosensors, PAO1 lasB-gfp and rhlA-gfp, with IC50 values at 3.53 μM and 2.41 μM, respectively. Preliminary analysis suggested the importance of the bromotyrosine and oxime functionalities for QSI activity in these molecules. In addition, psammaplin A and bisaprasin downregulated elastase expression as determined by the standard enzymatic elastase assay, although greater reduction in elastase production was observed with 1 at 50 μM and 100 μM. Furthermore, the study revealed that bisaprasin (2) reduced biofilm formation in P. aeruginosa.  相似文献   

7.
The biofilm formation of bacteria in different parts of the human body can influence the success of antibiotic therapy. Essential oils (EOs) and their components are becoming increasingly popular in point of view of medicinal applications, because of their antibacterial efficacy. The immortelle EO has been used traditionally as an expectorant; however, there are no studies summarizing its antibacterial effect against respiratory tract bacteria. Our aim was to investigate the antibacterial and biofilm inhibitory activity of immortelle (Helichrysum italicum) EO against respiratory tract pathogens such as Haemophilus influenzae, H. parainfluenzae, Pseudomonas aeruginosa and Streptococcus pneumoniae. In order to prove the antibacterial effect of the immortelle EO, broth microdilution and biofilm inhibition tests, and membrane damage assay were investigated. Scanning electron microscopy was used to identify the structural modifications in bacterial cells. Our results showed that immortelle EO has antibacterial and anti-biofilm effects against respiratory tract bacteria used in this study. H. parainfluenzae was the most sensitive to each treatment, however, P. aeruginosa was the most resistant bacteria. In conclusion, the studied EO may have a role in the treatment of respiratory tract infections due to their antibacterial and anti-biofilm activity.  相似文献   

8.
Antimicrobial resistance has posed a serious health concern worldwide, which is mainly due to the excessive use of antibiotics. In this study, gold nanoparticles synthesized from the plant Tinospora cordifolia were used against multidrug-resistant Pseudomonas aeruginosa. The active components involved in the reduction and stabilization of gold nanoparticles were revealed by gas chromatography–mass spectrophotometry(GC-MS) of the stem extract of Tinospora cordifolia. Gold nanoparticles (TG-AuNPs) were effective against P. aeruginosa at different concentrations (50,100, and 150 µg/mL). TG-AuNPs effectively reduced the pyocyanin level by 63.1% in PAO1 and by 68.7% in clinical isolates at 150 µg/mL; similarly, swarming and swimming motilities decreased by 53.1% and 53.8% for PAO1 and 66.6% and 52.8% in clinical isolates, respectively. Biofilm production was also reduced, and at a maximum concentration of 150 µg/mL of TG-AuNPs a 59.09% reduction inPAO1 and 64.7% reduction in clinical isolates were observed. Lower concentrations of TG-AuNPs (100 and 50 µg/mL) also reduced the pyocyanin, biofilm, swarming, and swimming. Phenotypically, the downregulation of exopolysaccharide secretion from P. aeruginosa due to TG-AuNPs was observed on Congo red agar plates  相似文献   

9.
Pseudomonas aeruginosa biofilm-related infections are the major cause of premature death in cystic fibrosis patients. Strategies to induce biofilm dispersal are of interest, because of their potential in preventing biofilm-related infections. Our previous work demonstrated that n-butanolic Cyclamen coum extract with ciprofloxacin could eliminate 1- and 3-day-old P. aeruginosa PAO1 biofilms. To gain new insights into the role of C. coum extract and its synergistic effect with ciprofloxacin in eliminating P. aeruginosa PAO1 biofilms, two-dimensional gel electrophoresis (2-DE) in combination with mass spectrometry-based protein identification were used. Changes in the bacterial protein expression were analyzed when 3-day-old biofilm cells were exposed to the C. coum extract alone and in combination with ciprofloxacin. Proteins involved in alginate biosynthesis, quorum sensing, adaptation/protection, carbohydrate and amino acid metabolism showed a weaker expression in the C. coum extract-ciprofloxacin-treated biofilm cells compared to those in the untreated cells. Interestingly, the proteome of C. coum extract-ciprofloxacin-treated biofilm revealed more resemblance to the planktonic phenotype than to the biofilm phenotype. It appears that saponin extract in combination with ciprofloxacin causes biofilm disruption due to several mechanisms such as motility induction, cell envelope integrity perturbation, stress protein expression reduction, and more importantly, signal transduction perturbation. In conclusion, exposure to a combination of biofilm dispersal such as saponin extract and antimicrobial agents may offer a novel strategy to control preestablished, persistent P. aeruginosa biofilms and biofilm-related infections.  相似文献   

10.
The extracellular α-amylase enzyme from Bacillus subtilis S8-18 of marine origin was proved as an antibiofilm agent against methicillin-resistant Staphylococcus aureus (MRSA), a clinical strain isolated from pharyngitis patient, Vibrio cholerae also a clinical isolate from cholera patient and Pseudomonas aeruginosa ATCC10145. The spectrophotometric and microscopic investigations revealed the potential of α-amylase to inhibit biofilm formation in these pathogens. At its BIC level, the crude enzyme caused 51.81–73.07% of biofilm inhibition. Beyond the inhibition, the enzyme was also effective in degradation of preformed mature biofilm by disrupting the exopolysaccharide (EPS), an essential component in biofilm architecture. Furthermore, the enzyme purified to its homogeneity by chromatographic techniques was also effective in biofilm inhibition (43.83–61.68%) as well as in degradation of EPS. A commercial α-amylase enzyme from B. subtilis was also used for comparative purpose. Besides, the effect of various enzymes and temperature on the antibiofilm activity of amylase enzymes was also investigated. This study, for the first time, proved that α-amylase enzyme alone can be used to inhibit/disrupt the biofilms of V. cholerae and MRSA strains and beholds much promise in clinical applications.  相似文献   

11.
Implantable medical devices (IMDs) are susceptible to microbial adhesion and biofilm formation, which lead to several clinical complications, including the occurrence of implant-associated infections. Polylactic acid (PLA) and its composites are currently used for the construction of IMDs. In addition, chitosan (CS) is a natural polymer that has been widely used in the medical field due to its antimicrobial and antibiofilm properties, which can be dependent on molecular weight (Mw). The present study aims to evaluate the performance of CS-based surfaces of different Mw to inhibit bacterial biofilm formation. For this purpose, CS-based surfaces were produced by dip-coating and the presence of CS and its derivatives onto PLA films, as well surface homogeneity were confirmed by contact angle measurements, Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The antimicrobial activity of the functionalized surfaces was evaluated against single- and dual-species biofilms of Staphylococcus aureus and Pseudomonas aeruginosa. Chitosan-based surfaces were able to inhibit the development of single- and dual-species biofilms by reducing the number of total, viable, culturable, and viable but nonculturable cells up to 79%, 90%, 81%, and 96%, respectively, being their activity dependent on chitosan Mw. The effect of CS-based surfaces on the inhibition of biofilm formation was corroborated by biofilm structure analysis using confocal laser scanning microscopy (CLSM), which revealed a decrease in the biovolume and thickness of the biofilm formed on CS-based surfaces compared to PLA. Overall, these results support the potential of low Mw CS for coating polymeric devices such as IMDs where the two bacteria tested are common colonizers and reduce their biofilm formation.  相似文献   

12.
The management of periodontitis remains a vital clinical challenge due to the interplay between the microorganisms of the dental biofilm and the host inflammatory response leading to a degenerative process in the surrounding tissues. Quercetin (QUE), a natural flavonol found in many foods, including apples, onions and tea, has exhibited prolonged and strong antibiofilm and anti-inflammatory effects both in vitro and in vivo. However, its clinical application is limited by its poor stability and water solubility, as well as its low bioavailability. Thus, in the present study, electrospun polylactic acid (PLA) nanofibers loaded with different amounts (5–10% w/w) of QUE were produced to rapidly respond to the acidic microenvironment typical of periodontal pockets during periodontal disease. This strategy demonstrated that PLA-QUE membranes can act as a drug reservoir releasing high QUE concentrations in the presence of oral bacterial infection (pH < 5.5), and thus limiting Pseudomonas aeruginosa PAO1 and Streptococcus mutans biofilm maturation. In addition, released QUE exerts antioxidant and anti-inflammatory effects on P. gingivalis Lipopolysaccharide (LPS)-stimulated human gingival fibroblast (HGFs). The reported results confirmed that PLA-QUE membranes could inhibit subgingival biofilm maturation while reducing interleukin release, thereby limiting host inflammatory response. Overall, this study provided an effective pH-sensitive drug delivery system as a promising strategy for treating periodontitis.  相似文献   

13.
In the present study, Indole-based-oxadiazole (1A-17A) compounds were successfully synthesized. The structures of all synthesized compounds were fully characterized by different sophisticated spectroscopic techniques such 1H NMR, 13C NMR, and HREI-MS. Further, the synthesized compounds were explored to investigate their broad-spectrum antibacterial and antibiofilm potential against multidrug resistant Pseudomonas aeruginosa (MDR-PA) and methicillin resistant Staphylococcus aureus (MRSA). The compounds possessed a broad spectrum of antibacterial activity having MIC values of values 1–8 mg/ml against the tested microorganisms. Compound A6 and A7 shows maximum antibacterial activity against MDR-PA, whereas A6, A7 and A11 shows highest activity against MRSA. Furthermore, antibiofilm assay shows that A6, A7 and A11 showed maximum inhibition of biofilm formation and it was found that at 4 mg/ml; A6, A7 and A11 inhibit MRSA biofilm formation by 81.1, 77.5 and 75.9%, respectively; whereas in case of P. aeruginosa; A6 and A7 showed maximum biofilm inhibition and inhibit biofilm formation by 81.5 and 73.7%, respectively. Molecular docking study showed that compounds A6, A7, A8, A10, and A11 had high binding affinity to bacterial peptidoglycan, indicating their potential inhibitory activity against tested bacteria, whereas A6 and A11 were found to be the most effective inhibitors of SARS CoV-2 main protease (3CLpro), with a binding affinity of ? 7.78 kcal/mol. Furthermore, SwissADME and pkCSM-pharmacokinetics online tools was applied to calculate the ADME/Tox profile of the synthesized compounds and the toxicity of these chemicals was found to be low. The Lipinski, Veber, Ghose, and Consensus LogP criteria were also used to predict drug-likeness levels of the compounds. Our findings imply that the synthesized compounds could be a useful for the preventing and treating biofilm-related microbial infection as well as SARS-CoV2 infections.  相似文献   

14.
Homogentisic acid γ-lactone exhibited excellent anti-quorum sensing (QS) and anti-biofilm activities against Pseudomonas aeruginosa. Moreover, it suppressed the QS-dependent virulence factors in P. aeruginosa by quenching its QS signal molecules.  相似文献   

15.
Quorum-sensing (QS) systems of Pseudomonas aeruginosa are involved in the control of biofilm formation and virulence factor production. The current study evaluated the ability of halogenated dihydropyrrol-2-ones (DHP) (Br (4a), Cl (4b), and F (4c)) and a non-halogenated version (4d) to inhibit the QS receptor proteins LasR and PqsR. The DHP molecules exhibited concentration-dependent inhibition of LasR and PqsR receptor proteins. For LasR, all compounds showed similar inhibition levels. However, compound 4a (Br) showed the highest decrease (two-fold) for PqsR, even at the lowest concentration (12.5 µg/mL). Inhibition of QS decreased pyocyanin production amongst P. aeruginosa PAO1, MH602, ATCC 25619, and two clinical isolates (DFU-53 and 364707). In the presence of DHP, P. aeruginosa ATCC 25619 showed the highest decrease in pyocyanin production, whereas clinical isolate DFU-53 showed the lowest decrease. All three halogenated DHPs also reduced biofilm formation by between 31 and 34%. The non-halogenated compound 4d exhibited complete inhibition of LasR and had some inhibition of PqsR, pyocyanin, and biofilm formation, but comparatively less than halogenated DHPs.  相似文献   

16.
Recently, increased attention has been focused on endoscopic disinfection after outbreaks of drug‐resistant infections associated with gastrointestinal endoscopy. The aims of this study were to investigate the bactericidal efficacy of methylene blue (MB)‐based photodynamic therapy (PDT) on Pseudomonas aeruginosa (P. aeruginosa), which is the major cause of drug‐resistant postendoscopy outbreak, and to assess the synergistic effects of hydrogen peroxide addition to MB‐based PDT on biofilms. In planktonic state of P. aeruginosa, the maximum decrease was 3 log10 and 5.5 log10 at 20 and 30 J cm?2, respectively, following MB‐based PDT. However, the maximum reduction of colony forming unit (CFU) was decreased by 2.5 log10 and 3 log10 irradiation on biofilms. The biofilm formation was significantly inhibited upon irradiation with MB‐based PDT. When the biofilm state of P. aeruginosa was treated with MB‐based PDT with hydrogen peroxide, the CFU was significantly decreased by 6 log10 after 20 J cm?2, by 7 log10 after 30 J cm?2 irradiation, suggesting significantly higher efficacy than MB‐based PDT alone. The implementation of the combination of hydrogen peroxide with MB‐based PDT through working channels might be appropriate for preventing early colonization and biofilm formation in the endoscope and postendoscopy outbreak.  相似文献   

17.
Red onion wastes (ROW) are valuable sources of bioactive metabolites with promising antimicrobial effects. Methicillin-resistant Staphylococcus aureus (MRSA) infections are a growing risk in hospitals and communities. This study aims to investigate the in vitro and in vivo antibiofilm activities of the acidified ethanolic extract of red onion scales (RO-T) and its fractions against an MRSA vaginal colonization model. The RO-T extract, as well as its anthocyanin-rich fraction (RO-P) and flavonoid-rich fraction (RO-S), recorded a promising antibacterial activity against highly virulent strains of bacteria (MRSA, Acinetobacter baumannii, Escherichia coli and Pseudomonas aeruginosa). RO-S showed the highest antibacterial activity (MBC of 0.33 ± 0.11 mg/mL) against MRSA USA300 and significantly eradicated its biofilm formation with an IC50 of 0.003. Using a rat model, in vivo assessment on all samples, which were formulated as a hydrogel, revealed a significant reduction of MRSA bacterial load recovered from an infected vagina compared to that of the negative control group (NCG). RO-T extract and vancomycin groups recorded the highest antibacterial activity with a bacterial load 2.998 and 3.358 logs lower than the NCG, respectively. The histopathological investigation confirmed our findings. RO-T and RO-S were standardized for their quercetin content. Finally, ROW offers a new potent antibiofilm agent mostly due to its high quercetin content.  相似文献   

18.
Oxidized bacterial nanocellulose (OBC) is reported to prevent microbial growth, but its antibacterial characteristics and mechanism are still unclear. Here, the antibacterial mechanism of OBC is explored by detecting and assessing the interaction of OBC with different carboxyl content on Staphylococcus aureus and Escherichia coli. The results show that OBC has strong antibacterial activity and antibiofilm activity against S. aureus and E. coli, which is positively correlated with the carboxyl content of OBC. After OBC treatment, the bacteria adhesion is inhibited and the cell membrane is destroyed leading to increased permeability. Further investigation reveals that the concentration of cyclic diguanosine monophosphate (c-di-GMP) that induced biofilm formation is significantly decreased to 1.81 pmol mg−1 after OBC treatment. In addition, OBC inactivates mature biofilms, with inactivation rates up to 79.3%. This study suggests that OBC has excellent antibacterial and antiadhesion properties, which can increase the cell membrane permeability and inhibit c-di-GMP formation. In addition, OBC also has a strong inactivation effect on mature biofilm, which can be used as an effective antibiofilm agent.  相似文献   

19.
The emergence of multi‐drug resistant (MDR) bacteria and dynamic pattern of infectious diseases demand to develop alternative and more effective therapeutic strategies. Silver nanoparticles (AgNPs) are among the most widely commercialized engineered nanomaterials, because of their unique properties and increasing use for various applications in nanomedicine. This study for the first time aimed to evaluate the antibacterial and antibiofilm activities of newly synthesized nanochelating based AgNPs against several Gram‐positive and ‐negative nosocomial pathogens. Nanochelating technology was used to design and synthesize the AgNPs. The cytotoxicity was tested in human cell line using the MTT assay. AgNPs minimal inhibitory concentration (MIC) was determined by standard broth microdilution. Antibiofilm activity was assayed by a microtiter‐plate screening method. The two synthesized AgNPs including AgNPs (A) with the size of about 20‐25 nm, and AgNPs (B) with 30‐35 nm were tested against Staphylococcus aureus, Staphylococcus epidermidis, Acinetobacter baumannii, and Pseudomonas aeruginosa. AgNPs exhibited higher antibacterial activity against Gram‐positive strains. AgNPs were found to significantly inhibit the biofilm formation of tested strains in concentration 0.01 to 10 mg/mL. AgNPs (A) showed significant effective antibiofilm activity compared to AgNPs (B). In summary, our results showed the promising antibacterial and antibiofilm activity of our new nanochelating based synthesized AgNPs against several nosocomial pathogens.  相似文献   

20.
The influences of reactant concentrations, solvent type, acid strength, pH conditions and ionic strength on the determination of apparent gas‐phase equilibrium constants K using electrospray ionisation mass spectrometry (ESI‐MS) were elucidated. As example serves the interaction of the tripeptide glutathione (GSH) with phenylarsine oxide (PAO). It was shown that rising initial concentrations of both reactants were not adequately compensated by increasing signal intensities of the reaction products in the mass spectra. The equilibrium constant for the formation of the phenylarsenic‐substituted peptide species decreased from 1.42 × 105 ± 1.81 × 104 l µmol?1 to 1.54 × 104 ± 1.5 × 103 l µmol?1 with rising initial GSH concentrations from 1 to 10 µM at fixed PAO molarity of 50 µM . K values resulting from a series with a fixed GSH molarity of 5 µM and a PAO molarity varied from 10 to 100 µM remained in a narrower range between 4.59 × 104 ± 2.15 × 104 l µmol?1 and 1.07 × 104 ± 4.0 × 103 l µmol?1. In contrast, consumption numbers calculated from the ion intensity ratios of reaction products to the unreacted peptide were not influenced by the initial reactant concentrations. In a water–acetonitrile–acetic acid mixture (48:50:2, v:v), the consumption of 5 µ M GSH increased from 8.3 ± 1.4% to 39.6 ± 1.6% with increased molar excess of PAO from 2 to 20, respectively. The GSH consumption was considerably enhanced in a changed solvent system consisting of 25% acetonitrile and 75% 10 mM ammonium formate, pH 5.0 (v:v) up to 80% of the original peptide amount at an only threefold molar arsenic excess. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号