首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lee  Y. Y.  Ng  C. F.  Guo  Xinyun 《Nonlinear dynamics》2003,31(3):327-345
This paper investigates large amplitude multi-mode free vibration andrandom response of thin cylindrical panels of rectangular planform usinga finite element modal formulation. A thin laminated composite doublycurved element is developed. The system equation in structural nodal DOFis transformed into the modal coordinates by the using the modes of theunderlying linear system. The nonlinear stiffness matrices are alsotransformed into nonlinear modal stiffness matrices. Numericalintegration is employed to determine free vibration and random response.Single-mode free vibration results are compared with existing classicalanalytical solutions to validate the nonlinear modal formulation.Nonlinear random analysis results for cylindrical panels have shown thatthe root mean square of panel deflections could be larger than thoseobtained using the linear structure theory. Time histories, probabilitydistribution functions, power spectral densities, and phase plane plotsare also presented.  相似文献   

2.
王玉鑫  张刚  卢翔 《应用力学学报》2020,(1):249-257,I0017,I0018
通过对湿热环境下阶梯挖补胶接修理后碳纤维/双马树脂(T300/QY8911)层合板振动特性的分析,探究了挖补修理后碳纤维/双马树脂层合板在不同湿热效应下的振动特性。基于Mindlin-Reissner板理论与最小势能变分原理,在考虑湿热效应前提下,推导了正交各向异性复合材料层合板的本构关系及四边简支条件下的自由振动控制方程;其次,利用ABAQUS软件建立了三维黏弹性有限元挖补修理模型,应用Fortran语言将湿热耦合下的应力-应变本构关系编入UMAT二次开发文件中,采用三维八节点五自由度等参单元进行了离散。通过与参考文献对照,验证了胶接修理后T300/QY8911层合板有限元模型和编译的湿热环境下UMAT子程序的合理性与有效性。算例结果表明:湿热环境对挖补修理后层合板固有频率的影响比对完整层合板严重;温度对材料性能的影响大于湿度;相比于材料性能变化对振动特性的影响,湿热残余应力对胶接修理后层合板振动特性的影响占主导;参考环境下,胶接修理后层合板的固有频率增大;湿应力对层合板固有频率的影响大于热应力。  相似文献   

3.
针对飞行器中常见的壁板结构,运用能量原理和变分方法,建立了定常温度场下复合材料壁板振动的控制方程以及相应的有限元分析模型。分析了热环境对壁板振动特性影响的机理,同时提出了一种针对热环境下复合材料壁板振动特性分析的线性化计算方法。采用这种方法,热环境的影响以一个热刚度项和一个热载荷项的形式出现在常温下的振动运动方程中,由此可以较准确地模拟热效应对结构振动特性的影响。通过对热环境下复合材料壁板振动固有特性数值分析结果的对比,验证了本文方法的可行性和计算精度。同时分析结果表明,热效应产生的诱导应力对结构刚度的影响是导致壁板固有振动频率降低的主要原因。  相似文献   

4.
Thermal post-buckled vibration of laminated composite doubly curved panel embedded with shape memory alloy (SMA) fiber is investigated and presented in this article. The geometry matrix and the nonlinear stiffness matrices are derived using Green–Lagrange type nonlinear kinematics in the framework of higher order shear deformation theory. In addition to that, material nonlinearity in shape memory alloy due to thermal load is incorporated by the marching technique. The developed mathematical model is discretized using a nonlinear finite element model and the sets of nonlinear governing equations are obtained using Hamilton’s principle. The equations are solved using the direct iterative method. The effect of nonlinearity both in geometric and material have been studied using the developed model and compared with those published literature. Effect of various geometric parameters such as thickness ratio, amplitude ratio, lamination scheme, support condition, prestrains of SMA, and volume fractions of SMA on the nonlinear free vibration behavior of thermally post-buckled composite flat/curved panel been studied in detail and reported.  相似文献   

5.
This paper presents an analysis of the active control of random vibration for laminated composite plates using piezoelectric fiber reinforced composites(PFRC). With Hamilton's principle and the Rayleigh-Ritz method, the equation of motion for the resulting electromechanical coupling system is derived. A velocity feedback control rule is employed to obtain an effective active damping in the suppression of random vibration. The power spectral density and meansquare displacements of the random vibration for laminated plates under different control gains are simulated and the validity of the present control strategy is confirmed. The effect of piezoelectric fiber orientation in the PFRC layer on the random vibration suppression is also investigated.The analytical methodology can be expanded to other kinds of random vibration.  相似文献   

6.
Magneto-rheological visco-elastomer(MRVE)as a new smart material developed in recent years has several significant advantages over magneto-rheological liquid.The adjustability of structural dynamics to random environmental excitations is required in vibration control.MRVE can supply considerably adjustable damping and stiffness for structures,and the adjustment of dynamic properties is achieved only by applied magnetic fields with changeless structure design.Increasing researches on MRVE dynamic properties,modeling,and vibration control application are presented.Recent advances in MRVE dynamic properties and structural vibration control application including composite structural vibration mitigation under uniform magnetic fields,vibration response characteristics improvement through harmonic parameter distribution,and optimal bounded parametric control design based on the dynamical programming principle are reviewed.Relevant main methods and results introduced are beneficial to understanding and researches on MRVE application and development.  相似文献   

7.
This paper presents an analytical solution for the free vibration behavior of functionally graded carbon nanotube-reinforced composite(FG-CNTRC) doubly curved shallow shells with integrated piezoelectric layers. Here, the linear distribution of electric potential across the thickness of the piezoelectric layer and five different types of carbon nanotube(CNT) distributions through the thickness direction are considered. Based on the four-variable shear deformation refined shell theory, governing equations are obtained by applying Hamilton's principle. Navier's solution for the shell panels with the simply supported boundary condition at all four edges is derived. Several numerical examples validate the accuracy of the presented solution. New parametric studies regarding the effects of different material properties, shell geometric parameters, and electrical boundary conditions on the free vibration responses of the hybrid panels are investigated and discussed in detail.  相似文献   

8.
基于一阶剪切变形理论,提出了复合材料层合板自由振动分析的无网格自然邻接点Petrov-Galerkin法。计算时在复合材料层合板中面上仅需要布置一系列的离散节点,并利用这些节点构建插值函数。在板中面上的局部多边形子域上,采用加权余量法建立复合材料层合板自由振动分析的离散化控制方程,并且这些子域可由Delaunay三角形方便创建。自然邻接点插值形函数具有Kronecker delta函数性质,因而无需经过特别处理就能准确地施加本质边界条件。对不同边界条件、不同跨厚比、不同材料参数和不同铺设角度的复合材料层合板,由本文提出的无网格自然邻接点Petrov-Galerkin法进行自由振动分析时均可得到满意的结果。数值算例结果表明,本文方法求解复合材料层合板的自由振动问题是行之有效的。  相似文献   

9.
基于物理中面和一阶剪切变形板理论,研究了不同边界条件下功能梯度材料(FGM)中厚板的自由振动问题.假设功能梯度板的材料性质沿厚度方向按幂函数规律连续变化.根据哈密顿原理建立了FGM板有限元形式的自由振动方程,利用MATLAB软件编写程序进行了计算.通过数值算例,讨论了不同边界条件下FGM中厚板的无量纲频率随材料梯度指数和厚宽比的变化情况,并与经典板理论下的频率进行了比较.  相似文献   

10.
To satisfy the interfacial shear force continuity conditions, a new model is proposed for the two-layer composite beam with partial interaction by modifying Reddy's higher order beam theory. The governing differential equations for free vibration and buckling are formulated using the Hamilton's principle, the natural frequencies and axial forces are thus analytically obtained by Laplace transform technique. The analytical results are verified through the comparison with those of several other models common in use; and the presented model is found to be a finer one than the Reddy's. A parametric study is also performed to investigate the effects of geometry and material parameters.  相似文献   

11.
Advancements in manufacturing technology, including the rapid development of additive manufacturing (AM), allow the fabrication of complex functionally graded material (FGM) sectioned beams. Portions of these beams may be made from different materials with possibly different gradients of material properties. The present work proposes models to investigate the free vibration of FGM sectioned beams based on onedimensional (1D) finite element analysis. For this purpose, a sample beam is divided into discrete elements, and the total energy stored in each element during vibration is computed by considering either the Timoshenko or Euler-Bernoulli beam theory. Then, Hamilton's principle is used to derive the equations of motion for the beam. The effects of material properties and dimensions of FGM sections on the beam's natural frequencies and their corresponding mode shapes are then investigated based on a dynamic Timoshenko model (TM). The presented model is validated by comparison with three-dimensional (3D) finite element simulations of the first three mode shapes of the beam.  相似文献   

12.
In this paper, the effect of sensitivity of randomness in system parameters on the nonlinear transverse central deflection response of laminated composite plates subjected to transverse uniform lateral pressure and thermal loading is examined. System parameters such as the lamina material properties, expansion of thermal coefficients, lamina plate thickness and lateral load are modelled as basic random variables. A higher order shear deformation theory in the von-Karman sense is used to model the system behavior of the laminated plate. A direct iterative-based C 0 nonlinear finite element method in conjunction with the first-order perturbation technique developed by the authors is extended for thermal problem to obtain the second-order response statistics, i.e., mean and variance of the nonlinear transverse deflection of the plate. Typical numerical results of composite plates with temperature independent and dependent material properties subjected to uniform temperature and combination of uniform and transverse temperature are obtained for various combinations of geometric parameters, uniform lateral pressures, staking sequences and boundary conditions. The results have been compared with those available in the literature and an independent Monte Carlo simulation.  相似文献   

13.
Based on shear-deformable beam theory, free vibration of thin-walled composite Timoshenko beams with arbitrary layups under a constant axial force is presented. This model accounts for all the structural coupling coming from material anisotropy. Governing equations for flexural-torsional-shearing coupled vibrations are derived from Hamilton’s principle. The resulting coupling is referred to as sixfold coupled vibrations. A displacement-based one-dimensional finite element model is developed to solve the problem. Numerical results are obtained for thin-walled composite beams to investigate the effects of shear deformation, axial force, fiber angle, modulus ratio on the natural frequencies, corresponding vibration mode shapes and load–frequency interaction curves.  相似文献   

14.
Free vibration of composite laminated plate with complicated cutout   总被引:1,自引:0,他引:1  
Abstract

This paper presents the free vibration analysis of a composite laminated square plate with complicated cutout. The problem formulation is based on the higher order shear deformation plate theory HDST C0 coupled with a curved quadrilateral p-element. The elements of the stiffness and mass matrices are calculated analytically. The curved edges are accurately represented using the blending function method. A calculation program is developed to determine the fundamental frequencies for different physical and mechanical parameters such as the cutout shape, plate thickness, fiber orientation angle, and boundary conditions. The results obtained show a good agreement with the available solutions in the literature. New results for the fundamentals frequencies of a composite laminated plate with complicated cutout are presented.  相似文献   

15.
In this paper, second order statistics of large amplitude free flexural vibration of shear deformable functionally graded materials (FGMs) beams with surface-bonded piezoelectric layers subjected to thermopiezoelectric loadings with random material properties are studied. The material properties such as Young’s modulus, shear modulus, Poisson’s ratio and thermal expansion coefficients of FGMs and piezoelectric materials with volume fraction exponent are modeled as independent random variables. The temperature field considered is assumed to be uniform and non-uniform distribution over the plate thickness and electric field is assumed to be the transverse components E z only. The mechanical properties are assumed to be temperature dependent (TD) and temperature independent (TID). The basic formulation is based on higher order shear deformation theory (HSDT) with von-Karman nonlinear strain kinematics. A C 0 nonlinear finite element method (FEM) based on direct iterative approach combined with mean centered first order perturbation technique (FOPT) is developed for the solution of random eigenvalue problem. Comparison studies have been carried out with those results available in the literature and Monte Carlo simulation (MCS) through normal Gaussian probability density function.  相似文献   

16.
State-vector equation with damping and vibration analysis of laminates   总被引:2,自引:0,他引:2  
Based on the modified mixed Hellinger-Reissner(H-R)variational principle for elastic bodies with damping,the state-vector equation with parameters is directionally derived from the principle.A new solution for the harmonic vibration of simply supported rectangular laminates with damping is proposed by using the precise integration method and Muller method.The general solutions for the free vibration of underdamping,critical damp and overdamping of composite laminates are given simply in terms of the linear damping vibration theory.The effect of viscous damping force on the vibration of com- posite laminates is investigated through numerical examples.The state-vector equation theory and its application areas are extended.  相似文献   

17.
区别于一般圆柱壳,开口圆柱壳沿周向是不封闭的,因此具有四个边界,本文根据轴向梁式振动和轴向曲拱振动特性对各种端部与侧边边界条件下的壳体提出统一的位移振型函数,并根据哈密顿原理建立了材料参数与空间坐标相关的正交各向异性开口圆柱壳的动力变分方程,求出了不同材料属性下开敞圆柱壳固有频率与振型解的一般解析表达式,适用于任意边界条件下不同材料的开敞圆柱壳自由振动分析.  相似文献   

18.
A micro-scale free vibration analysis of composite laminated Timoshenko beam (CLTB) model is developed based on the new modified couple stress theory. In this theory, a new anisotropic constitutive relation is defined for modeling the CLTB. This theory uses rotation–displacement as dependent variable and contains only one material length scale parameter. Hamilton’s principle is employed to derive the governing equations of motion and boundary conditions. This new model can be reduced to composite laminated Bernoulli–Euler beam model of the couple stress theory. An example analysis of free vibration of the cross-ply simply supported CLTB model is adopted, and an explicit expression of analysis solution is given. Additionally, the numerical results show that the present beam models can capture the scale effects of the natural frequencies of the micro-structure.  相似文献   

19.
Thermal residual-stresses introduced during manufacture and their effect on the natural frequencies and vibration modes of stringer stiffened composite plates is investigated. The principal idea in the work is to include stiffeners on the perimeter of a composite plate in which the laminate design of the stiffeners and plate are different. Such an arrangement yields manufacturing induced thermal residual-stresses; these stresses result from the difference in manufacturing and operating temperatures as well as the difference in thermal expansion coefficients and elastic properties of the plate and the stiffeners. The analysis is based on an enhanced Reissner–Mindlin plate theory and involves two separate calculations. In the first, the thermal residual-stress state is determined for an unconstrained plate. In the second, the free vibration problem is solved; thermal effects from the first calculation are included by way of nonlinear membrane-bending coupling which in turn defines the free vibration reference state. The problem is solved using a 16-node bi-cubic Lagrange element in a finite element formulation. Three different plate-stiffener geometries are used to illustrate the effects of stringer size, stringer placement and temperature difference. Two principal results are obtained: first, it is shown that thermal residual-stresses can have a significant effect on the natural frequencies; secondly, thermal residual-stresses can be tailored to increase natural frequencies. Therefore it is concluded that an evaluation of these stresses and a judicious analysis of their effects must be included in the design of this class of composite structures.  相似文献   

20.
薛坚  牛牧青  张文勇  陈立群 《力学学报》2022,54(7):2041-2049
二元复合材料板是超材料板结构中常见的单元之一. 针对由材料参数相差两个量级的基体和嵌入体组成的二元复合材料板, 提出结构自由振动的半解析模型, 并对其振动特性进行了研究. 基于区域分解法和二元材料的分布, 将二维平板分解成两个子区域. 通过在振型函数中附加区域试函数, 来描述复合材料板面内刚度突变引起局部位移和转角的非光滑性. 基于二元复合材料板的基本边界条件和两子区连接处的变形协调条件, 构造了新的振型函数. 基于经典薄板理论, 利用带特殊试函数的里兹法, 求得不同几何构型下二元复合材料板的固有频率和振型, 并研究了嵌入体的尺寸和位置对结构振动特性的影响规律. 通过收敛分析并与有限元仿真结果对比, 验证了本文方法的准确性. 研究结果表明: 传统的全局试函数在分析具有振动局部化的模态时会得到不准确的结果, 而附加区域试函数可以显著提高里兹法的收敛速度以及结果的准确性; 嵌入体位置对低阶固有频率的作用不明显, 却能显著改变低阶振型节线的分布和振动局部化发生的区域.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号