首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
赵东焕 《物理学报》1994,43(9):1447-1454
分析了自由电子激光器中电子与波的相互作用过程,导出了相应的增益表达式。结果表明,它不仅能很好地反映自由电子激光器中相干辐射,而且表明了具有激光输出饱和特性。分析结果更加符合实验情况。 关键词:  相似文献   

2.
Using the recently proposed echo-enabled harmonic generation (EEHG) free-electron laser (FEL) scheme, it is shown that operating the Shanghai deep ultraviolet FEL (SDUV-FEL) with single-stage to higher harmonics is very promising, with higher frequency up-conversion effciency, higher harmonic selectivity and lower power requirement of the seed laser. The considerations on a proof-of-principle experiment and expected performance in SDUV-FEL are given.  相似文献   

3.
Using the recently proposed echo-enabled harmonic generation (EEHG) free-electron laser (FEL) scheme, it is shown that operating the Shanghai deep ultraviolet FEL (SDUV-FEL) with single-stage to higher harmonics is very promising, with higher frequency up-conversion efficiency, higher harmonic selectivity and lower power requirement of the seed laser. The considerations on a proof-of-principle experiment and expected performance in SDUV-FEL are given.  相似文献   

4.
Free electron laser (FEL) and self-amplified spontaneous emission (SASE) are being developed in the far-infrared region using the L-band electron linac at the Institute of Scientific and Industrial Research (ISIR), Osaka University. The L-band linac was recently remodeled extensively not only for higher operational stability and reproducibility but also for high power operation of FEL. After commissioning of the linac, we first began SASE experiment with a newly-developed strong-focusing wiggler. Recently we began FEL experiment and obtained lasing with the high peak power at 70 μm again after a long break.  相似文献   

5.
Generation of X-ray radiation in a cascade self-amplified spontaneous emission free-electron laser (SASE FEL) using the harmonics of a two-frequency undulator is studied. The advanced phenomenological model of a one-pass FEL that accounts for the main losses in real FELs is presented: the electron energy spread in the beam, the beam divergence, diffraction, and the fact that emission losses are greater at higher harmonics than in the main frequency range. The FEL mathematical model was performed using the Mathematica software and calibrated within the experiment carried out at the operating SPARC facility via complex three-dimensional numerical simulations. The phenomenological model is used to analyze FEL dynamics for generation of a high-energy X-ray emission at a relatively short length. It is proposed to use a two-frequency undulator for the initial electron grouping and subsequent frequency multiplication in a cascade FEL with higher harmonic amplification (HGHG). The advantages of the two-frequency undulator are presented for electron grouping at higher harmonics of the undulator radiation (UR). The operation of several types of FEL is simulated with amplification of the seed laser wave frequency in two and three cascades to generate the soft X-ray radiation. A seed laser with a wavelength of 11.43 nm corresponding to the peak reflectivity of mirror coatings with MoRu/Be is proposed for generating the intensive X-ray laser radiation with λ ~ 1.27–3.37 nm. Here, the intensive radiation power reaches 50 MW at a length of only 35 meters; the radiation shows good temporal coherence corresponding to the performance of a low-power seed laser with a lower frequency.  相似文献   

6.
通过三维磁场的有限元计算,给出了自由电子激光(FEL)研究用光学速调管升级后的磁参数。国家同步辐射实验室合肥光源(HLS)电子储存环能量可以日常运行在200~800 MeV间,为了与电子储存环能量匹配,并在较高束电子能量下进行实验和得到较多的相干辐射光子,光学速调管从原来的对称结构升级成非对称结构,用于HLS储存环谐波产生FEL实验。给出了升级后非对称光学速调管的几组匹配磁参数,用于在HLS储存环注入能量和可以运行的最高能量下进行谐波FEL实验。初步计算表明,HLS 储存环电子束性能优越,能散很低,FEL实验用最高能散仅为2.05×10-4,相应FEL辐射的能散修正因子在0.96以上,可以忽略不计。  相似文献   

7.
8.
Subpicosecond synchronization between a mirror-dispersion-controlled 10-fs Ti:sapphire laser and the Free-Electron Laser for Infrared Experiments has been achieved. The measured intensity cross correlation between the two lasers is consistent with a jitter of only 400 fs rms. The wide and continuous tunability of the free-electron laser (FEL; 4.2-300mum) combined with ultrashort pulse duration of six optical cycles and high pulse energy of several tens of microjoules makes a series of two-color experiments possible in a previously inaccessible wavelength range. We demonstrate these capabilities by performing a two-color pump-probe experiment to study carrier cooling in GaAs. A FEL tuned from 8 to 17mum is used as the pump, and a synchronized Ti:sapphire laser pulse serves as the probe.  相似文献   

9.
We report output power and frequency measurements of a pulsed free electron laser (FEL) operating as an amplifier at 35 GHz, without guiding field. The experiment used an induction linac, which delivers an 800-A relativistic electron beam (2.2 MeV) with a flat-top of 40 ns into the helical wiggler. The input signal furnished by a 35-GHz magnetron source is amplified to power levels of the order of 80 MW. The experimental results are in good agreement with our simulations. Frequency chirping is observed, and its behavior as a function of the basic FEL parameters is discussed  相似文献   

10.
A free-electron laser (FEL) operating in the quantum regime can provide a compact and monochromatic x-ray source. Here we present the complete quantum model for a FEL with a laser wiggler in three spatial dimensions, based on a discrete Wigner-function formalism taking into account the longitudinal momentum quantization. The model describes the complete spatial and temporal evolution of the electron and radiation beams, including diffraction, propagation, laser wiggler profile and emittance effects. The transverse motion is described in a suitable classical limit, since the typical beam emittance values are much larger than the Compton wavelength quantum limit. In this approximation we derive an equation for the Wigner function which reduces to the three-dimensional Vlasov equation in the complete classical limit. Preliminary numerical results are presented together with parameters for a possible experiment.  相似文献   

11.
We find that the electron phase with respect to the incident laser radiation must be random in the first freeelectron laser (FEL) and, hence, the incident laser radiation works as a relaxation force to keep a Maxwellian distribution. We formulate the threshold laser intensity for amplification which agrees with the measured value in the order of magnitude in the first FEL. The magnetic wiggler must produce an electric wiggler whose period is the same as that of the magnetic wiggler. We find that net stimulated free-electron two-quantum Stark (FETQS) emission driven by this electric wiggler is the mechanism responsible for the measured gain and the measured laser intensity at the plateau in the first FEL.  相似文献   

12.
Considering the random field error of the wiggler, we deduce the equation of phase motion and calculate the phase volume of interaction in a real helical wiggler. The result was compared with the case of the ideal wiggler field. We analyze how the random field error causes the efficiency of free electron laser (FEL) to reduce, and simulate the FEL efficiency reduction effect according to the mechanisms which we present in this paper. The consequence agrees excellently with the experiment.  相似文献   

13.
We report the first experimental implementation of a method based on simultaneous use of an energy chirp in the electron beam and a tapered undulator, for the generation of ultrashort pulses in a self-amplified spontaneous emission mode free-electron laser (SASE FEL). The experiment, performed at the SPARC FEL test facility, demonstrates the possibility of compensating the nominally detrimental effect of the chirp by a proper taper of the undulator gaps. An increase of more than 1 order of magnitude in the pulse energy is observed in comparison to the untapered case, accompanied by FEL spectra where the typical SASE spiking is suppressed.  相似文献   

14.
We report the first measurements of the electron-beam microbunching z dependence in a self-amplified spontaneous-emission (SASE) free-electron laser (FEL) experiment by the observation of visible wavelength coherent transition radiation (CTR). In this case the fundamental SASE wavelength was at 537 nm, and the CTR exhibited an exponential intensity growth similar to the SASE radiation. In addition, we observed for the first time structure in the CTR angular distribution patterns that may be useful for optimizing SASE FEL performance.  相似文献   

15.
The linear free-electron laser (FEL) theory with plasma background is considered using the hybrid model in contrast with the fluid model to describe the FEL interaction with plasma proposed by Weng-Bing and Ya-Shen (1988) and Tripathi and Liu (1990). The basic dynamical equations for the FEL with warm plasma background are derived for all ranges of plasma and beam densities with unspecified wiggler period number and strength. The linear behavior of the FEL is analyzed  相似文献   

16.
This paper contains studies of the operation of a one-dimensional storage ring free-electron laser (FEL) using a Monte Carlo technique to generate the electron energy fluctuations produced by the FEL. The energy and phase equations of motion have been numerically integrated to calculate equilibrium values of: a) electron energy spread, b) electron phase spread (e.g. electron bunch length), and c) efficiency of conversion of electron energy into laser radiation. The operation of the storage ring free-electron laser was studied for five different FEL magnet designs. It is found that a “one-dimensional” storage ring free-electron laser can operate on a steady-state basis only with reduced overall efficiency due to the inability of the system to damp effectively the electron energy fluctuations produced by the FEL. Results of operation of a SRFEL in a pulsed mode are also presented. Work supported by U.S. Army BMD-ATC, under contract number DASG 60-77-C-0083.  相似文献   

17.
Power and spectral measurements are reported from the Columbia Raman free-electron laser (FEL) oscillator experiment. High-power radiation pulses (~12 MW, 100 ns) are generated at a wavelength of ~2.5 mm, using a 750-kV electron beam injected into a helical undulator. The undulator is made up of a 40-cm long constant-period (1.45 cm) section followed by an equal length of tapered undulator. The period is decreased by 7.6% in such a way that the on-axis field remains constant. It is reported that the taper allows an increase in total power efficiency from ~4 to ~12%. Most noteworthy is that the tapered undulator reduces the sideband radiation compared with a constant-period undulator FEL which is studied in the same configuration. The power was measured calorimetrically and compared with the results of a 1-D Raman code. The reduction of sideband power observed in the experiment was consistent with computational results obtained with a 2-D sideband code  相似文献   

18.
X射线自由电子激光试验装置(以下简称"SXFEL试验装置")是中国第一台X射线相干光源,其输出波长小于9 nm.这台基于0.84 GeV直线加速器、以掌握装置相关技术和实验演示种子型自由电子激光(FEL)级联与短波长回声型FEL为主要目标的自由电子激光装置,于2020年11月通过国家验收.本文将介绍SXFEL试验装置的...  相似文献   

19.
稳定波长反馈引起的失谐对自由电子激光的影响   总被引:1,自引:1,他引:0  
 利用修改的一维非定态程序,基于美国杰弗逊实验室(JLab)Demo自由电子激光装置的参数,对高功率自由电子激光振荡器稳定波长的反馈系统进行了数值模拟。电子微脉冲为高斯型分布,每个纵向网格中取16个模拟宏电子,不考虑电子束的能散度。结果表明:当无反馈时,腔内光功率和波长都可以在一定范围内稳定;加入反馈后,由于电子束能量的变化所引起的等效失谐对整个系统有着重要的影响,甚至可能导致电子和光场失去相互作用,从而使得装置不能工作。提出应该在光场达到饱和以后再启动稳定波长反馈系统。模拟结果证明,该实施方案是合理有效的,可以避免其对FEL运行的严重影响。  相似文献   

20.
null 《中国物理C(英文版)》2016,40(9):098102-098102
We study a self-seeded high-gain harmonic generation(HGHG) free-electron laser(FEL) scheme to extend the wavelength of a soft X-ray FEL. This scheme uses a regular self-seeding monochromator to generate a seed laser at the wavelength of 1.52 nm, followed by a HGHG configuration to produce coherent, narrow-bandwidth harmonic radiations at the GW level. The 2nd and 3rd harmonic radiation is investigated with start-to-end simulations.Detailed studies of the FEL performance and shot-to-shot fluctuations are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号