首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Neutral diastereoisomeric diruthenium(III) complexes, meso- and rac-[(acac)(2)Ru(μ-adc-OR)Ru(acac)(2)] (acac(-) = 2,4-pentanedionato and adc-OR(2-) = dialkylazodicarboxylato = [RO(O)CNNC(O)OR](2-), R = tert-butyl or isopropyl), were obtained from electron transfer reactions between Ru(acac)(2)(CH(3)CN)(2) and azodicarboxylic acid dialkyl esters (adc-OR). The meso isomer 3 with R = isopropyl was structurally characterized, revealing two deprotonated and N-N coupled carbamate functions in a reduced dianionic bridge with d(N-N) = 1.440(5) ?. A rather short distance of 4.764 ? has been determined between the two oxidized, antiferromagnetically coupled Ru(III) centers. The rac isomer 4 with R = isopropyl exhibited stronger antiferromagnetic coupling. While the oxidation of the neutral compounds was fully reversible only for 3 and 4, two well-separated (10(8) < K(c) < 10(10)) reversible one-electron reduction steps produced monoanionic intermediates 1(-)-4(-) with intense (ε ≈ 3000 M(-1) cm(-1)), broad (Δν(1/2) ≈ 3000 cm(-1)) absorptions in the near-infrared (NIR) region around 2000 nm. The absence of electron paramagnetic resonance (EPR) signals even at 4 K favors the mixed-valent formulation Ru(II)(adc-OR(2-))Ru(III) with innocently behaving bridging ligands over the radical-bridged alternative Ru(II)(adc-OR(?-))Ru(II), a view which is supported by the metal-centered spin as calculated by density functional theory (DFT) for the methyl ester model system. The second reduction of the complexes causes the NIR absorption to disappear completely, the EPR silent oxidized forms 3(+) and 4(+), calculated with asymmetrical spin distribution, do not exhibit near infrared (NIR) activity. The series of azo-bridged diruthenium complex redox systems [(acac)(2)Ru(μ-adc-R)Ru(acac)(2)](n) (n = +,0,-,2-), [(bpy)(2)Ru(μ-adc-R)Ru(bpy)(2)](k) (k = 4+,3+,2+,0,2-), and [(acac)(2)Ru(μ-dih-R)Ru(acac)(2)](m) (m = 2+,+,0,-,2-; dih-R(2-) = 1,2-diiminoacylhydrazido(2-)) is being compared in terms of electronic structure and identity of the odd-electron intermediates, revealing the dichotomy of innocent vs noninnocent behavior.  相似文献   

2.
Crystallographically characterised 3,6-bis(2'-pyridyl)pyridazine (L) forms complexes with {(acac)2Ru} or {(bpy)2Ru2+}via one pyridyl-N/pyridazyl-N chelate site in mononuclear Ru(II) complexes (acac)2Ru(L), 1, and [(bpy)2Ru(L)](ClO4)2, [3](ClO4)2. Coordination of a second metal complex fragment is accompanied by deprotonation at the pyridazyl-C5 carbon {L --> (L - H+)-} to yield cyclometallated, asymmetrically bridged dinuclear complexes [(acac)2Ru(III)(mu-L - H+)Ru(III)(acac)2](ClO4), [2](ClO4), and [(bpy)2Ru(II)(mu-L - H+)Ru(II)(bpy)2](ClO4)3, [4](ClO4)3. The different electronic characteristics of the co-ligands, sigma donating acac- and pi accepting bpy, cause a wide variation in metal redox potentials which facilitates the isolation of the diruthenium(III) form in [2](ClO4) with antiferromagnetically coupled Ru(III) centres (J = -11.5 cm(-1)) and of a luminescent diruthenium(II) species in [4](ClO4)3. The electrogenerated mixed-valent Ru(II)Ru(III) states 2 and [4]4+ with comproportionation constants Kc > 10(8) are assumed to be localised with the Ru(III) ion bonded via the negatively charged pyridyl-N/pyridazyl-C5 chelate site of the bridging (L - H+)- ligand. In spectroelectrochemical experiments they show similar intervalence charge transfer bands of moderate intensity around 1300 nm and comparable g anisotropies (g1-g3 approximatly 0.5) in the EPR spectra. However, the individual g tensor components are distinctly higher for the pi acceptor ligated system [4]4+, signifying stabilised metal d orbitals.  相似文献   

3.
The series of 4-center unsaturated chelate ligands A═B-C═D with redox activity to yield (-)A-B═C-D(-) in two steps has been complemented by two new combinations RNNC(R')E, E = O or S, R = R' = Ph. The ligands N-benzoyl-N'-phenyldiazene = L(O), and N-thiobenzoyl-N'-phenyldiazene = L(S), (obtained in situ) form structurally characterized compounds [(acac)(2)Ru(L)], 1 with L = L(O), and 3 with L = L(S), and [(bpy)(2)Ru(L)](PF(6)), 2(PF(6)) with L = L(O), and 4(PF(6)) with L = L(S) (acac(-) = 2,4-pentanedionato; bpy = 2,2'-bipyridine). According to spectroscopy and the N-N distances around 1.35 ? and N-C bond lengths of about 1.33 ?, all complexes involve the monoanionic (radical) ligand form. For 1 and 3, the antiferromagnetic spin-spin coupling with electron transfer-generated Ru(III) leads to diamagnetic ground states of the neutral complexes, whereas the cations 2(+) and 4(+) are EPR-active radical ligand complexes of Ru(II). The complexes are reduced and oxidized in reversible one-electron steps. Electron paramagnetic resonance (EPR) and UV-vis-NIR spectroelectrochemistry in conjunction with time-dependent density functional theory (TD-DFT) calculations allowed us to assign the electronic transitions in the redox series, revealing mostly ligand-centered electron transfer: [(acac)(2)Ru(III)(L(0))](+) ? [(acac)(2)Ru(III)(L(?-))] ? [(acac)(2)Ru(III)(L(2-))](-)/[(acac)(2)Ru(II)(L(?-))](-), and [(bpy)(2)Ru(III)(L(?-))](2+)/[(bpy)(2)Ru(II)(L(0))](2+) ? [(bpy)(2)Ru(II)(L(?-))](+) ? [(bpy)(2)Ru(II)(L(2-))](0). The differences between the O and S containing compounds are rather small in comparison to the effects of the ancillary ligands, acac(-) versus bpy.  相似文献   

4.
5.
Paramagnetic diruthenium(III) complexes (acac)(2)Ru(III)(mu-OC(2)H(5))(2)Ru(III)(acac)(2) (6) and [(acac)(2)Ru(III)(mu-L)Ru(III)(acac)(2)](ClO(4))(2), [7](ClO(4))(2), were obtained via the reaction of binucleating bridging ligand, N,N,N',N'-tetra(2-pyridyl)-1,4-phenylenediamine [(NC(5)H(4))(2)-N-C(6)H(4)-N-(NC(5)H(4))(2), L] with the monomeric metal precursor unit (acac)(2)Ru(II)(CH(3)CN)(2) in ethanol under aerobic conditions. However, the reaction of L with the metal fragment Ru(II)(bpy)(2)(EtOH)(2)(2+) resulted in the corresponding [(bpy)(2)Ru(II) (mu-L) Ru(II)(bpy)(2)](ClO(4))(4), [8](ClO(4))(4). Crystal structures of L and 6 show that, in each case, the asymmetric unit consists of two independent half-molecules. The Ru-Ru distances in the two crystallographically independent molecules (F and G) of 6 are found to be 2.6448(8) and 2.6515(8) A, respectively. Variable-temperature magnetic studies suggest that the ruthenium(III) centers in 6 and [7](ClO(4))(2) are very weakly antiferromagnetically coupled, having J = -0.45 and -0.63 cm(-)(1), respectively. The g value calculated for 6 by using the van Vleck equation turned out to be only 1.11, whereas for [7](ClO(4))(2), the g value is 2.4, as expected for paramagnetic Ru(III) complexes. The paramagnetic complexes 6 and [7](2+) exhibit rhombic EPR spectra at 77 K in CHCl(3) (g(1) = 2.420, g(2) = 2.192, g(3) = 1.710 for 6 and g(1) = 2.385, g(2) = 2.177, g(3) = 1.753 for [7](2+)). This indicates that 6 must have an intermolecular magnetic interaction, in fact, an antiferromagnetic interaction, along at least one of the crystal axes. This conclusion was supported by ZINDO/1-level calculations. The complexes 6, [7](2+), and [8](4+) display closely spaced Ru(III)/Ru(II) couples with 70, 110, and 80 mV separations in potentials between the successive couples, respectively, implying weak intermetallic electrochemical coupling in their mixed-valent states. The electrochemical stability of the Ru(II) state follows the order: [7](2+) < 6 < [8](4+). The bipyridine derivative [8](4+) exhibits a strong luminescence [quantum yield (phi) = 0.18] at 600 nm in EtOH/MeOH (4:1) glass (at 77 K), with an estimated excited-state lifetime of approximately 10 micros.  相似文献   

6.
The new compounds [(acac)2Ru(mu-boptz)Ru(acac)2] (1), [(bpy)2Ru(mu-boptz)Ru(bpy)2](ClO4)2 (2-(ClO4)2), and [(pap)2Ru(mu-boptz)Ru(pap)2](ClO4)2 (3-(ClO4)2) were obtained from 3,6-bis(2-hydroxyphenyl)-1,2,4,5-tetrazine (H2boptz), the crystal structure analysis of which is reported. Compound 1 contains two antiferromagnetically coupled (J = -36.7 cm(-1)) Ru(III) centers. We have investigated the role of both the donor and acceptor functions containing the boptz2- bridging ligand in combination with the electronically different ancillary ligands (donating acac-, moderately pi-accepting bpy, and strongly pi-accepting pap; acac = acetylacetonate, bpy = 2,2'-bipyridine pap = 2-phenylazopyridine) by using cyclic voltammetry, spectroelectrochemistry and electron paramagnetic resonance (EPR) spectroscopy for several in situ accessible redox states. We found that metal-ligand-metal oxidation state combinations remain invariant to ancillary ligand change in some instances; however, three isoelectronic paramagnetic cores Ru(mu-boptz)Ru showed remarkable differences. The excellent tolerance of the bpy co-ligand for both Ru(III) and Ru(II) is demonstrated by the adoption of the mixed-valent form in [L2Ru(mu-boptz)RuL2]3+, L = bpy, whereas the corresponding system with pap stabilizes the Ru(II) states to yield a phenoxyl radical ligand and the compound with L = acac- contains two Ru(III) centers connected by a tetrazine radical-anion bridge.  相似文献   

7.
Based on data from more than 40 crystal structures of metal complexes with azo-based bridging ligands (2,2'-azobispyridine, 2,2'-azobis(5-chloropyrimidine), azodicarbonyl derivatives), a correlation between the N?N bond lengths (d(NN) ) and the oxidation state of the ligand (neutral, neutral/back-donating, radical-anionic, dianionic) was derived. This correlation was applied to the analysis of four ruthenium compounds of 2,2'-azobispyridine (abpy), that is, the new asymmetrical rac-[(acac)(2) Ru1(μ-abpy)Ru2(bpy)(2) ](ClO(4) )(2) ([1](ClO(4) )(2) ), [Ru(acac)(2) (abpy)] (2), [Ru(bpy)(2) (abpy)](ClO(4) )(2) ([3](ClO(4) )(2) ), and meso-[(bpy)(2) Ru(μ-abpy)Ru(bpy)(2) ](ClO(4) )(3) ([4](ClO(4) )(3) ; acac(-) =2,4-pentanedionato, bpy=2,2'-bipyridine). In agreement with DFT calculations, both mononuclear species 2 and 3(2+) can be described as ruthenium(II) complexes of unreduced abpy(0) , with 1.295(5)相似文献   

8.
The Ru(2)(III,II) mixed-valent state is strongly stabilized in [(bpy)(2)Ru(mu-bttz)Ru(bpy)(2)](5+) (3(5+), bttz = 3,6-bis(2-thienyl)-1,2,4,5-tetrazine, as evident from lowered oxidation potentials and isolability, a strongly increased comproportionation constant K(c) = 10(16.6), and a high-energy intervalence charge transfer band at 10100 cm(-1). Curiously, no such effects were observed for the diosmium(III,II) analogue, whereas the related systems [(bpy)(2)M(mu-bmptz)M(bpy)(2)](5+), bmptz = 3,6-bis(4-methyl-2-pyridyl)-1,2,4,5-tetrazine, exhibit conventional behavior, i.e., a slightly higher K(c) value of the Os(2)(III,II) analogue. EPR signals were observed at 4 K for 3(5+) but not for the other mixed-valent species, and high-frequency (285 GHz) EPR was employed to study the diruthenium(II) radical complexes 2(3+) and 3(3+).  相似文献   

9.
10.
The PF6- salt of the dinuclear [(bpy)2Ru(1)Os(bpy)2]4+ complex, where 1 is a phenylacetylene macrocycle which incorporates two 2,2'-bipyridine (bpy) chelating units in opposite sites of its shape-persistent structure, was prepared. In acetonitrile solution, the Ru- and Os-based units display their characteristic absorption spectra and electrochemical properties as in the parent homodinuclear compounds. The luminescence spectrum, however, shows that the emission band of the Ru(II) unit is almost completely quenched with concomitant sensitization of the emission of the Os(II) unit. Electronic energy transfer from the Ru(II) to the Os(II) unit takes place by two distinct processes (k(en) = 2.0x10(8) and 2.2x10(7) s(-1) at 298 K). Oxidation of the Os(II) unit of [(bpy)2Ru(1)Os(bpy)2]4+ by Ce(IV) or nitric acid leads quantitatively to the [(bpy)2Ru(II)(1)Os(III)(bpy)2]5+ complex which exhibits a bpy-to-Os(III) charge-transfer band at 720 nm (epsilon(max) = 250 M(-1) cm(-1)). Light excitation of the Ru(II) unit of [(bpy)2Ru(II)(1)Os(III)(bpy)2]5+ is followed by electron transfer from the Ru(II) to the Os(III) unit (k(el,f) = 1.6x10(8) and 2.7x10(7) s(-1)), resulting in the transient formation of the [(bpy)2Ru(III)(1)Os(II)(bpy)2]5+ complex. The latter species relaxes to the [(bpy)2Ru(II)(1)Os(III)(bpy)2]5+ one by back electron transfer (k(el,b) = 9.1x10(7) and 1.2x10(7) s(-1)). The biexponential decays of the [(bpy)2*Ru(II)(1)Os(II)(bpy)2]4+, [(bpy)2*Ru(II)(1)Os(III)(bpy)2]5+, and [(bpy)2Ru(III)(1)Os(II)(bpy)2]5+ species are related to the presence of two conformers, as expected because of the steric hindrance between hydrogen atoms of the pyridine and phenyl rings. Comparison of the results obtained with those previously reported for other Ru-Os polypyridine complexes shows that the macrocyclic ligand 1 is a relatively poor conducting bridge.  相似文献   

11.
Binuclear beta-diketonatoruthenium(III) complexes [[Ru(acac)(2)](2)(tae)], [[Ru(phpa)(2)](2)(tae)], and [(acac)(2)Ru(tae)Ru(phpa)(2)] and binuclear and mononuclear bipyridine complexes [[Ru(bpy)(2)](2)(tae)](PF(6))(2) and [Ru(bpy)(2)(Htae)]PF(6) (acac = 2,4-pentanedionate ion, phpa = 2,2,6,6-tetramethyl-3,5-heptanedionate ion, tae = 1,1,2,2-tetraacetylethanate dianion, and bpy = 2,2'-bipyridine) were synthesized. The new complexes have been characterized by (1)H NMR, MS, and electronic spectral data. Crystal and molecular structures of [[Ru(acac)(2)](2)(tae)] have been solved by single-crystal X-ray diffraction studies. Crystal data for the meso isomer of [[Ru(acac)(2)](2)(tae)] have been confirmed by the dihedral angle result that two acetylacetone units of the bridging tae ligand are almost perpendicular to one another. A detailed investigation on the electrochemistry of the binuclear complexes has been carried out. The electrochemical behavior details of the binuclear complexes have been compared with those of the mononuclear complexes obtained from the half-structures of the corresponding binuclear complexes. Studies on the effects of solvents on the mixed-valence states of Ru(II)-Ru(III) and Ru(III)-Ru(IV) complexes have been carried out by various voltammetric and electrospectroscopic techniques. A correlation between the comproportionation constant (K(c)) and the donor number of the solvent has been obtained. The K(c) values for the binuclear complexes have been found to be low because of the fact that two acetylacetone units of the bridging tae ligand are not in the same plane, as revealed by the crystal structure of [[Ru(acac)(2)](2)(tae)].  相似文献   

12.
Reaction of [Ru(acac)(2)(CH(3)CN)(2)] with 3,6-bis(3,5-dimethylpyrazol-1-yl)-1,4-dihydro-1,2,4,5-tetrazine (H(2)L) results in formation of an unexpected dinuclear complex [(acac)(2)Ru(III)(L(1))Ru(III)(acac)(2)] (1) in which the bridging ligand [L(1)](2)(-) contains an (-)HN[bond]C[double bond]N[bond]N[double bond]C[bond]NH(-) unit arising from two-electron reduction of the 1,4-dihydro-1,2,4,5-tetrazine component of H(2)L. The crystal structure of complex 1 confirms the oxidation assignment of the metal ions as Ru(III) and clearly shows the consequent arrangement of double and single bonds in the bridging ligand, which acts as a bis-bidentate chelate having two pyrazolyl/amido chelating sites. Cyclic voltammetry of the complex shows the presence of four reversible one-electron redox couples, assigned as two Ru(III)/Ru(IV) couples (oxidations with respect to the starting material) and two Ru(II)/Ru(III) couples (reductions with respect to the starting material). The separation between the two Ru(III)/Ru(IV) couples (Delta E(1/2) = 700 mV) is much larger than that between the two Ru(II)/Ru(III) couples (Delta E(1/2) = 350 mV) across the same bridging pathway, because of the better ability of the dianionic bridging ligand to delocalize an added hole (in the oxidized mixed-valence state) than an added electron (in the reduced mixed-valence state), implying some ligand-centered character for the oxidations. UV-vis-NIR spectroelectrochemical measurements were performed in all five oxidation states; the Ru(II)-Ru(III) mixed-valence state of [1](-) has a strong IVCT transition at 2360 nm whose parameters give an electronic coupling constant of V(ab) approximately 1100 cm(-1), characteristic of a strongly interacting but localized (class II) mixed-valence state. In the Ru(III)-Ru(IV) mixed-valence state [1](+), no low-energy IVCT could be detected despite the strong electronic interaction, possibly because it is in the visible region and obscured by LMCT bands.  相似文献   

13.
Zigler DF  Wang J  Brewer KJ 《Inorganic chemistry》2008,47(23):11342-11350
Bimetallic complexes of the form [(bpy)(2)Ru(BL)RhCl(2)(phen)](PF(6))(3), where bpy = 2,2'-bipyridine, phen = 1,10-phenanthroline, and BL = 2,3-bis(2-pyridyl)pyrazine (dpp) or 2,2'-bipyrimidine (bpm), were synthesized, characterized, and compared to the [{(bpy)(2)Ru(BL)}(2)RhCl(2)](PF(6))(5) trimetallic analogues. The new complexes were synthesized via the building block method, exploiting the known coordination chemistry of Rh(III) polyazine complexes. In contrast to [{(bpy)(2)Ru(dpp)}(2)RhCl(2)](PF(6))(5) and [{(bpy)(2)Ru(bpm)}(2)RhCl(2)](PF(6))(5), [(bpy)(2)Ru(dpp)RhCl(2)(phen)](PF(6))(3) and [(bpy)(2)Ru(bpm)RhCl(2)(phen)](PF(6))(3) have a single visible light absorber subunit coupled to the cis-Rh(III)Cl(2) moiety, an unexplored molecular architecture. The electrochemistry of [(bpy)(2)Ru(dpp)RhCl(2)(phen)](PF(6))(3) showed a reversible oxidation at 1.61 V (vs Ag/AgCl) (Ru(III/II)), quasi-reversible reductions at -0.39 V, -0.74, and -0.98 V. The first two reductive couples corresponded to two electrons, consistent with Rh reduction. The electrochemistry of [(bpy)(2)Ru(bpm)RhCl(2)(phen)](PF(6))(3) exhibited a reversible oxidation at 1.76 V (Ru(III/II)). A reversible reduction at -0.14 V (bpm(0/-)), and quasi-reversible reductions at -0.77 and -0.91 V each corresponded to a one electron process, bpm(0/-), Rh(III/II), and Rh(II/I). The dpp bridged bimetallic and trimetallic display Ru(dpi)-->dpp(pi*) metal-to-ligand charge transfer (MLCT) transitions at 509 nm (14,700 M(-1) cm(-1)) and 518 nm (26,100 M(-1) cm(-1)), respectively. The bpm bridged bimetallic and trimetallic display Ru(dpi)-->bpm(pi*) charge transfer (CT) transitions at 581 nm (4,000 M(-1) cm(-1)) and 594 nm (9,900 M(-1) cm(-1)), respectively. The heteronuclear complexes [(bpy)(2)Ru(dpp)RhCl(2)(phen)](PF(6))(3) and [{(bpy)(2)Ru(dpp)}(2)RhCl(2)](PF(6))(5) had (3)MLCT emissions that are Ru(dpi)-->dpp(pi*) CT in nature but were red-shifted and lower intensity than [(bpy)(2)Ru(dpp)Ru(bpy)(2)](PF(6))(4). The lifetimes of the (3)MLCT state of [(bpy)(2)Ru(dpp)RhCl(2)(phen)](PF(6))(3) at room temperature (30 ns) was shorter than [(bpy)(2)Ru(dpp)Ru(bpy)(2)](PF(6))(4), consistent with favorable electron transfer to Rh(III) to generate a metal-to-metal charge-transfer ((3)MMCT) state. The reported synthetic methods provide means to a new molecular architecture coupling a single Ru light absorber to the Rh(III) center while retaining the interesting cis-Rh(III)Cl(2) moiety.  相似文献   

14.
Mononuclear [Ru(II)(tptz)(acac)(CH3CN)]ClO4 ([1]ClO4) and mixed-valent dinuclear [(acac)2Ru(III){(mu-tptz-Eta+)-}Ru(II)(acac)(CH3CN)]ClO4 ([5]ClO4; acac = acetylacetonate) complexes have been synthesized via the reactions of Ru(II)(acac)2(CH3CN)2 and 2,4,6-tris(2-pyridyl)-1,3,5-triazine (tptz), in 1:1 and 2:1 molar ratios, respectively. In [1]ClO4, tptz binds with the Ru(II) ion in a tridentate N,N,N mode (motif A), whereas in [5]ClO4, tptz bridges the metal ions unsymmetrically via the tridentate neutral N,N,N mode with the Ru(II) center and cyclometalated N,C- state with the Ru(III) site (motif F). The activation of the coordinated nitrile function in [1]ClO4 and [5]ClO4 in the presence of ethanol and alkylamine leads to the formation of iminoester ([2]ClO4 and [7]ClO4) and amidine ([4]ClO4) derivatives, respectively. Crystal structure analysis of [2]ClO4 reveals the formation of a beautiful eight-membered water cluster having a chair conformation. The cluster is H-bonded to the pendant pyridyl ring N of tptz and also with the O atom of the perchlorate ion, which, in turn, makes short (C-H- - - - -O) contacts with the neighboring molecule, leading to a H-bonding network. The redox potentials corresponding to the Ru(II) state in both the mononuclear {[(acac)(tptz)Ru(II)-NC-CH3]ClO4 ([1]ClO4) > [(acac)(tptz)Ru(II)-NH=C(CH3)-OC2H5]ClO4 ([2]ClO4) > [(acac)(tptz)Ru(II)-NH2-C6H4(CH3)]ClO4 ([3]ClO4) > [(acac)(tptz)Ru(II)-NH=C(CH3)-NHC2H5]ClO4 ([4]ClO4)} and dinuclear {[(acac)2Ru(III){(mu-tptz-H+)-}Ru(II)(acac)(NC-CH3)]ClO4 ([5]ClO4), [(acac)2Ru(III){(mu-tptz-H+(N+-O-)2)-}Ru(II)(acac)(NC-CH3)]ClO4 ([6]ClO4), [(acac)2Ru(III){(mu-tptz-H+)-}Ru(II)(acac)(NH=C(CH3)-OC2H5)]ClO4 ([7]ClO4), and [(acac)2Ru(III){(mu-tptz-Eta+)-}Ru(II)(acac)(NC4H4N)]ClO4 ([8]ClO(4))} complexes vary systematically depending on the electronic nature of the coordinated sixth ligands. However, potentials involving the Ru(III) center in the dinuclear complexes remain more or less invariant. The mixed-valent Ru(II)Ru(III) species ([5]ClO4-[8]ClO4) exhibits high comproportionation constant (Kc) values of 1.1 x 10(12)-2 x 10(9), with substantial contribution from the donor center asymmetry at the two metal sites. Complexes display Ru(II)- and Ru(III)-based metal-to-ligand and ligand-to-metal charge-transfer transitions, respectively, in the visible region and ligand-based transitions in the UV region. In spite of reasonably high K(c) values for [5]ClO4-[8]ClO4, the expected intervalence charge-transfer transitions did not resolve in the typical near-IR region up to 2000 nm. The paramagnetic Ru(II)Ru(III) species ([5]ClO4-[8]ClO4) displays rhombic electron paramagnetic resonance (EPR) spectra at 77 K (g approximately 2.15 and Deltag approximately 0.5), typical of a low-spin Ru(III) ion in a distorted octahedral environment. The one-electron-reduced tptz complexes [Ru(II)(tptz.-)(acac)(CEta3CN)] (1) and [(acac)2Ru(III){(mu-tptz-Eta+).2-}Ru(II)(acac)(CH3CN)] (5), however, show a free-radical-type EPR signal near g = 2.0 with partial metal contribution.  相似文献   

15.
The complexes [Ru(tpy)(acac)(Cl)], [Ru(tpy)(acac)(H(2)O)](PF(6)) (tpy = 2,2',2"-terpyridine, acacH = 2,4 pentanedione) [Ru(tpy)(C(2)O(4))(H(2)O)] (C(2)O(4)(2)(-) = oxalato dianion), [Ru(tpy)(dppene)(Cl)](PF(6)) (dppene = cis-1,2-bis(diphenylphosphino)ethylene), [Ru(tpy)(dppene)(H(2)O)](PF(6))(2), [Ru(tpy)(C(2)O(4))(py)], [Ru(tpy)(acac)(py)](ClO(4)), [Ru(tpy)(acac)(NO(2))], [Ru(tpy)(acac)(NO)](PF(6))(2), and [Ru(tpy)(PSCS)Cl] (PSCS = 1-pyrrolidinedithiocarbamate anion) have been prepared and characterized by cyclic voltammetry and UV-visible and FTIR spectroscopy. [Ru(tpy)(acac)(NO(2))](+) is stable with respect to oxidation of coordinated NO(2)(-) on the cyclic voltammetric time scale. The nitrosyl [Ru(tpy)(acac)(NO)](2+) falls on an earlier correlation between nu(NO) (1914 cm(-)(1) in KBr) and E(1/2) for the first nitrosyl-based reduction 0.02 V vs SSCE. Oxalate ligand is lost from [Ru(II)(tpy)(C(2)O(4))(H(2)O)] to give [Ru(tpy)(H(2)O)(3)](2+). The Ru(III/II) and Ru(IV/III) couples of the aqua complexes are pH dependent. At pH 7.0, E(1/2) values are 0.43 V vs NHE for [Ru(III)(tpy)(acac)(OH)](+)/[Ru(II)(tpy)(acac)(H(2)O)](+), 0.80 V for [Ru(IV)(tpy)(acac)(O)](+)/[Ru(III)(tpy)(acac)(OH)](+), 0.16 V for [Ru(III)(tpy)(C(2)O(4))(OH)]/[Ru(II)(tpy)(C(2)O(4))(H(2)O)], and 0.45 V for [Ru(IV)(tpy)(C(2)O(4))(O)]/[Ru(III)(tpy)(C(2)O(4))(OH)]. Plots of E(1/2) vs pH define regions of stability for the various oxidation states and the pK(a) values of aqua and hydroxo forms. These measurements reveal that C(2)O(4)(2)(-) and acac(-) are electron donating to Ru(III) relative to bpy. Comparisons with redox potentials for 21 related polypyridyl couples reveal the influence of ligand changes on the potentials of the Ru(IV/III) and Ru(III/II) couples and the difference between them, DeltaE(1/2). The majority of the effect appears in the Ru(III/II) couple. ()A linear correlation exists between DeltaE(1/2) and the sum of a set of ligand parameters defined by Lever et al., SigmaE(i)(L(i)), for the series of complexes, but there is a dramatic change in slope at DeltaE(1/2) approximately -0.11 V and SigmaE(i)(L(i)) = 1.06 V. Extrapolation of the plot of DeltaE(1/2) vs SigmaE(i)(L(i)) suggests that there may be ligand environments in which Ru(III) is unstable with respect to disproportionation into Ru(IV) and Ru(II). This would make the two-electron Ru(IV)O/Ru(II)OH(2) couple more strongly oxidizing than the one-electron Ru(IV)O/Ru(III)OH couple.  相似文献   

16.
The bis-bidentate bridging function of gbha2- with N,O-/N,O- coordination was observed for the first time in the complex (mu-gbha)[Ru(III)(acac)2]2 (1). Density functional theory calculations of 1 yield a triplet ground state with a large (deltaE > 6000 cm(-1)) singlet-triplet gap. Intermolecular antiferromagnetic coupling was observed (J approximately -5.3 cm(-1)) for the solid. Complex 1 undergoes two one-electron reduction and two one-electron oxidation steps; the five redox forms [(mu-gbha)[Ru(acac)2]2]n (n = -2, -1, 0, +1, +2) were characterized by UV-vis-NIR spectroelectrochemistry (NIR = near infrared). The paramagnetic intermediates were also investigated by electron paramagnetic resonance (EPR) spectroscopy. The monoanion with a comproportionation constant K(c) of 2.7 x 10(8) does not exhibit an NIR band for a Ru(III)/Ru(II) mixed-valent situation; it is best described as a 1,4-diazabutadiene radical anion containing ligand gbha*3-, which binds two ruthenium(III) centers. A Ru(III)-type EPR spectrum with g1 = 2.27, g2 = 2.21, and g3 = 1.73 is observed as a result of antiferromagnetic coupling between one Ru(III) and the ligand radical. The EPR-active monocation (K(c) = 1.7 x 10(6)) exhibits a broad (deltanu(1/2) = 2600 cm(-1)) intervalence charge-transfer band at 1800 nm, indicating a valence-averaged (Ru3.5)2 formulation (class III) with a tendency toward class II (borderline situation).  相似文献   

17.
18.
The diamagnetic title complexes were obtained from Ru(acac)(2)(CH(3)CN)(2) and 2-aminophenol or 2-aminothiophenol. X-ray structure analysis of (L(1))Ru(acac)(2) (L(1) = o-iminoquinone) revealed C-C intra-ring, C-O, and C-N distances which suggest a Ru(III)-iminosemiquinone oxidation state distribution with antiparallel spin-spin coupling. One-electron oxidation and reduction of both title compounds to paramagnetic monocations [(L)Ru(acac)(2)](+) or monoanions [(L)Ru(acac)(2)](-) occurs reversibly at widely separated potentials (deltaE > 1.3 V) and leads to low-energy shifted charge transfer bands. In comparison with clearly established Ru(II)-semiquinone or Ru(III)-catecholate systems the g tensor components 2.23 > g(1) > 2.09, 2.16 > g(2) > 2.07, and 1.97 > g(3) > 1.88 point to considerable metal contributions to the singly occupied MO, corresponding to Ru(III) complexes with either o-quinonoid (--> cations) or catecholate-type ligands (--> anions) and only minor inclusion of Ru(IV)- or Ru(II)-iminosemiquinone formulations, respectively. The preference for the Ru(III) oxidation state for all accessible species is partially attributed to the monoanionic 2,4-pentanedionate (acac) co-ligands which favor a higher metal oxidation state than, e.g., neutral 2,2'-bipyridine (bpy).  相似文献   

19.
A theoretical investigation of proton-coupled electron transfer in ruthenium polypyridyl complexes is presented. The three reactions studied are as follows: (1) the comproportionation reaction of [(bpy)(2)(py)Ru(IV)O](2+) and [(bpy)(2)(py)Ru(II)OH(2)](2+) to produce [(bpy)(2)(py)Ru(III)OH](2+); (2) the comproportionation reaction of [(tpy)(bpy)Ru(IV)O](2+) and [(tpy)(bpy)Ru(II)OH(2)](2+) to produce [(tpy)(bpy)Ru(III)OH](2+); and (3) the cross reaction of [(tpy)(bpy)Ru(III)OH](2+) and [(bpy)(2)(py)Ru(II)OH(2)](2+) to produce [(tpy)(bpy)Ru(II)OH(2)](2+) and [(bpy)(2)(py)Ru(III)OH](2+). This investigation is motivated by experimental measurements of rates and kinetic isotope effects for these systems (Binstead, R. A.; Meyer, T. J. J. Am. Chem. Soc. 1987, 109, 3287. Farrer, B. T.; Thorp, H. H. Inorg. Chem. 1999, 38, 2497.). These experiments indicate that the second reaction is nearly one order of magnitude faster than the first reaction, and the third reaction is in the intermediate regime. The experimentally measured kinetic isotope effects for these three reactions are 16.1, 11.4, and 5.8, respectively. The theoretical calculations elucidate the physical basis for the experimentally observed trends in rates and kinetic isotope effects, as well as for the unusually high magnitude of the kinetic isotope effects. In this empirical model, the proton donor-acceptor distance is predicted to be largest for the first reaction and smallest for the third reaction. This prediction is consistent with the degree of steric crowding near the oxygen proton acceptor for the three reactions. The second reaction is faster than the first reaction since a smaller proton donor-acceptor distance leads to a larger overlap between the reactant and product proton vibrational wave functions. The intermediate rate of the third reaction is determined by a balance among several competing factors. The observed trend in the kinetic isotope effects arises from the higher ratio of the hydrogen to deuterium vibrational wave function overlap for larger proton donor-acceptor distances. Thus, the kinetic isotope effect increases for larger proton donor-acceptor distances. The unusually high magnitude of the kinetic isotope effects is due in part to the close proximity of the proton transfer interface to the electron donor and acceptor. This proximity results in strong electrostatic interactions that lead to a relatively small overlap between the reactant and product vibrational wave functions.  相似文献   

20.
A bis(ruthenium-bipyridine) complex bridged by 1,8-bis(2,2':6',2'-terpyrid-4'-yl)anthracene (btpyan), [Ru(2)(μ-Cl)(bpy)(2)(btpyan)](BF(4))(3) ([1](BF(4))(3); bpy = 2,2'-bipyridine), was prepared. The cyclic voltammogram of [1](BF(4))(3) in water at pH?1.0 displayed two reversible [Ru(II),Ru(II)](3+)/[Ru(II),Ru(III)](4+) and [Ru(II),Ru(III)](4+)/[Ru(III),Ru(III)](5+) redox couples at E(1/2)(1) = +0.61 and E(1/2)(2) = +0.80?V (vs. Ag/AgCl), respectively, and an irreversible anodic peak at around E = +1.2?V followed by a strong anodic currents as a result of the oxidation of water. The controlled potential electrolysis of [1](3+) ions at E = +1.60?V in water at pH?2.6 (buffered with H(3)PO(4)/NaH(2)PO(4)) catalytically evolved dioxygen. Immediately after the electrolysis of the [1](3+) ion in H(2)(16)O at E = +1.40?V, the resultant solution displayed two resonance Raman bands at nu = 442 and 824?cm(-1). These bands shifted to nu = 426 and 780?cm(-1), respectively, when the same electrolysis was conducted in H(2)(18)O. The chemical oxidation of the [1](3+) ion by using a Ce(IV) species in H(2)(16)O and H(2)(18)O also exhibited the same resonance Raman spectra. The observed isotope frequency shifts (Δnu = 16 and 44?cm(-1)) fully fit the calculated ones based on the Ru-O and O-O stretching modes, respectively. The first successful identification of the metal-O-O-metal stretching band in the oxidation of water indicates that the oxygen-oxygen bond at the stage prior to the evolution of O(2) is formed through the intramolecular coupling of two Ru-oxo groups derived from the [1](3+) ion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号