首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three metal-organic frameworks with 1D zigzag chain [Zn(dte)(H2O)3]·2H2O (1), 2D double layer [Cd(dtb)(H2O)(phen)] (2), 3D network [Zn(dte)(phen)] (3) based on tetrazole-based ligands (H2dtb = 1,3-dis(2H-tetrazol-5-yl)benzene, H2dte = 1,4-ditetrazolylethylene, phen = 1,10-phenanthroline), have been synthesized and characterized. All the compounds exhibit unusual strong luminescence at room temperature in the solid state and can be potentially used as luminescent materials.  相似文献   

2.
3.
Microporous hydrophobic polysilanes with high specific surface areas (700-1100 m2 g(-1)) for applications in gas adsorption are obtained using an organolithiation route.  相似文献   

4.
羧基配体金属有机骨架材料作为催化剂的研究进展   总被引:1,自引:2,他引:1  
王丽苹 《分子催化》2015,(3):275-287
<正>金属有机骨架材料(MOFs)是由无机金属中心与多齿有机配体通过配位键形成的立体网络结构多孔晶体材料[1].MOFs具有多孔性、大比表面积、结构规整、有机配体的可修饰性、金属离子的可选择性等特点,在气体吸附、气体分离、磁性材料、光学材料和催化剂等领域得到广泛的应用[2-6].尤其是在催化方面,MOFs结合了金属有机配合物和分子筛的优点,可以直接用作催化剂,也可作为催化剂载体使用.  相似文献   

5.
Three metal-organic frameworks, [Eu(C10H6N3O5)3(H2O)2]?·?H2O (1), [Tb(C10H6N3O5)3(H2O)2]?·?H2O (2), and [Cd(C10H6N3O5)2Cl2] (3) based on T-shaped tripodal ligands 3-(4,5-dicarboxy-1H-imidazol-2-yl)pyridine-1-oxide and 4-(4,5-dicarboxy-1H-imidazol-2-yl)pyridine-1-oxide (H3DCImPyO), have been synthesized by the hydrothermal method and characterized by elemental analysis, IR, and single-crystal X-ray structure analysis. The diverse coordination modes of H3DCImPyO ligands have afforded the three compounds. Complexes 1 and 2 are isomers and the Ln (Ln?=?Eu or Tb) atoms have coordination number eight with a distorted square prism geometry. The partly deprotonated H2DCImPyO? ligands display three different coordination modes to link Ln (Ln?=?Tb or Eu) into 1-D double chains. In 3, Cd(II) lies on an inversion center and displays a slightly distorted octahedral coordination. All three compounds exhibit strong fluorescent emissions in the solid state at room temperature.  相似文献   

6.
Four new metal-organic frameworks (MOFs) containing chiral channels have been synthesized using an achiral, triazine-based trigonal-planar ligand, 4,4',4' '-s-triazine-2,4,6-triyltribenzoate (TATB), and an hourglass secondary building unit (SBU): Zn3(TATB)2(H2O)2.4DMF.6H2O (1); Cd3(TATB)2(H2O)2.7DMA.10H2O (2); [H2N(CH3)2][Zn3(TATB)2(HCOO)].HN(CH3)2.3DMF.3H2O (3); [H2N(CH3)2][Cd3(TATB)2(CH3COO)].HN(CH3)2.3DMA.4H2O (4). MOFs 1 and 2 are isostructural and possess (10,3)-a nets containing large chiral channels of 20.93 and 21.23 A, respectively, but are thermally unstable due to the easy removal of coordinated water molecules on the SBU. Replacement of these water molecules by formate or acetate generated in situ leads to 3 and 4, respectively. Formate or acetate links SBUs to form infinite helical chains bridged by TATB to create three-dimensional anionic networks, in which one of the two oxygen atoms of the formate or acetate is uncoordinated and points into the void of the channels. This novel SBU-stabilization and channel-functionalization strategy may have general implications in the preparation of new MOFs. Thermogravimetric analysis (TGA) shows that solvent-free 3' is thermally stable to 410 degrees C, while TGA studies on samples vapor-diffused with water, methanol, and chloroform show reversible adsorption. MOF 3 also has permanent porosity with a large Langmuir surface area of 1558 m2/g. All complexes exhibit similar strong luminescence with a lambdamax of approximately 423 nm upon excitation at 268.5 nm.  相似文献   

7.
Applications of metal-organic frameworks (MOFs) require close correlation between their structure and function. We describe the preparation and characterization of two zinc MOFs based on a flexible and emissive linker molecule, stilbene, which retains its luminescence within these solid materials. Reaction of trans-4,4'-stilbene dicarboxylic acid and zinc nitrate in N,N-dimethylformamide (DMF) yielded a dense 2-D network, 1, featuring zinc in both octahedral and tetrahedral coordination environments connected by trans-stilbene links. Similar reaction in N,N-diethylformamide (DEF) at higher temperatures resulted in a porous, 3-D framework structure, 2. This framework consists of two interpenetrating cubic lattices, each featuring basic zinc carboxylate vertices joined by trans-stilbene, analogous to the isoreticular MOF (IRMOF) series. We demonstrate that the optical properties of both 1 and 2 correlate with the local ligand environments observed in the crystal structures. Steady-state and time-resolved spectroscopic measurements reveal that the stilbene linkers in the dense structure 1 exhibit a small degree of interchromophore coupling. In contrast, the stilbenoid units in 2 display very little interaction in this low-density 3-D framework, with excitation and emission spectra characteristic of monomeric stilbenes, similar to the dicarboxylic acid in dilute solution. In both cases, the rigidity of the stilbene linker increases upon coordination to the inorganic units through inhibition of torsion about the central ethylene bond, resulting in luminescent crystals with increased emission lifetimes compared to solutions of trans-stilbene. The emission spectrum of 2 is found to depend on the nature of the incorporated solvent molecules, suggesting use of this or related materials in sensor applications.  相似文献   

8.
Two novel porous zeolitelike metal-organic frameworks (ZMOFs) were constructed via the single metal ion-based molecular building block approach from rigid and directional tetrahedral building units and pyrimidinecarboxylate bridging ligands; their ion exchange and hydrogen sorption properties were evaluated.  相似文献   

9.
Two new compounds, [Cd2(bptc)(bpimb)(H2O)]?·?2H2O (1) and [Cd2(bptc)(bpib)]?·?4H2O (2) (where H4bptc?=?biphenyl-3,3′,4,4′-tetracarboxylic acid, bpimb?=?1,3-bis((2-(pyridin-2-yl)-1H-imidazol-1-yl)methyl)benzene, bpib?=?1,4-bis(2-(pyridin-2-yl)-1H-imidazol-1-yl)butane), were synthesized by reactions of the corresponding metal salts with H4bptc and N-containing auxiliary ligands and their structures have been determined by single-crystal X-ray diffraction. Compound 1 is built by Cd4-clusters which further construct a 3-D (3,8)-connected framework with tfz-d notation; 2, also built by Cd4-clusters, is a 3-D (4,8)-connected framework with (32?·?42?·?52)(34?·?48?·?512?·?64) topology. In addition, the elemental analyses, infrared spectra, fluorescence, and thermogravimetric analyses for 1 and 2 are discussed.  相似文献   

10.
Two metal-organic coordination polymers, [Cd(HIDC)(pytpy)] (1) and [Zn(HIDC)(pytpy)] · (H2O) (2), have been synthesized by reactions of 4′-(3-pyridyl)-2,2′ : 6′,2″-terpyridine (pytpy), 4,5-imidazoledicarboxylic acid (H3IDC) with CdCl2 · 2.5H2O and ZnCl2, respectively, in the presence of base. Compound 1 is a one-dimensional (1-D) helical chain with the chains extended into a three-dimensional supramolecular network through two different π ··· π interactions from pytpy ligands. Compound 2 is also a 1-D helical chain and adjacent chains are packed into a 2-D layer through π ··· π interactions between terminal pyridyl and pendant pyridyl rings from pytpy ligands. The photoluminescent properties of the two compounds are also investigated.  相似文献   

11.
A three-dimensional (3D) metal-organic framework {[Zn(2)(HBDC)(2)(dmtrz)(2)]·guest}(n) with pcu net has been solvothermally synthesized, which shows selective adsorption of linear and monobranched hexane isomers over a dibranched one.  相似文献   

12.
The twelve-connected metal-organic frameworks {[Ni(3)(OH)(L)(3)].n(solv)}(infinity) and {[Fe(3)(O)(L)(3)].n(solv)}(infinity) [LH(2) = pyridine-3,5-bis(phenyl-4-carboxylic acid)] have been prepared and characterised: these materials can be desolvated to form porous materials that show adsorption of H(2) up to 4.15 wt% at 77 K.  相似文献   

13.
Self-assembly and surface-mediated reactions of 1,3,5-tris(4-mercaptophenyl)benzene--a three-fold symmetric aromatic trithiol--are studied on Cu(111) by means of scanning tunneling microscopy (STM) under ultrahigh-vacuum (UHV) conditions. In order to reveal the nature of intermolecular bonds and to understand the specific role of the substrate for their formation, these studies were extended to Ag(111). Room-temperature deposition onto either substrate yields densely packed trigonal structures with similar appearance and lattice parameters. Yet, thermal annealing reveals distinct differences between both substrates: on Cu(111) moderate annealing temperatures (~150 °C) already drive the emergence of two different porous networks, whereas on Ag(111) higher annealing temperatures (up to ~300 °C) were required to induce structural changes. In the latter case only disordered structures with characteristic dimers were observed. These differences are rationalized by the contribution of the adatom gas on Cu(111) to the formation of metal-coordination bonds. Density functional theory (DFT) methods were applied to identify intermolecular bonds in both cases by means of their bond distances and geometries.  相似文献   

14.
Five transition metal compounds containing arenesulfonates and 4,4′-bipy ligands, namely [Zn2(N,N′-4,4′-bipy)(N-4,4′-bipy)2(H2O)8](bpds)2 · 5H2O (1), [Ag2(N,N′-4,4′-bipy)2(bpds)] (2), [Cd(N,N′-4,4′-bipy)(H2O)4]2(4-abs)4 · 5H2O (3), [Cu(N,N′-4,4′-bipy) (O-bs)2(H2O)2] · 4H2O (4), and [Zn(N,N′-4,4′-bipy)2(H2O)2](4,4′-bipy)(bs)2 · 4H2O (5) (4,4′-bipy = 4,4′-bipyridine, bpds = 4,4′-biphenyldisulfonate, 4-abs = 4-aminobenzenesulfonate, bs = benzenesulfonate), have been synthesized and characterized by X-ray single crystal diffraction, elemental analyses and TG analyses, in order to investigate the coordination chemistry of arenesulfonates and 4,4-bipy, as well as to construct novel coordination frameworks via mixed-ligand strategy. Compounds 2, 4 and 5 could be obtained via hydrothermal or aqueous reactions. Compound 1 forms a binuclear octahedral metal complex. Compounds 24 form polymeric chains. Compound 5 consists of 2D square grids with one intercalated 4,4′-bipy molecule. Weak Ag–Ag interactions are observed in compound 2. These complexes show great structural varieties and there are three different coordination modes observed for both the 4,4′-bipy and the sulfonate ligands.  相似文献   

15.
This work is focusing on the potential application of metal-organic frameworks as porous materials in heterogeneous catalysis where the substrate is in solution. The understanding of such a liquid-phase heterogeneous catalytic process requires adsorption equilibrium data in solution. For this purpose several metal-organic frameworks were synthesized as reference materials and tested as adsorbents for the adsorption of substrate molecules such as styrene or ethylcinnamate from the liquid phase. The adsorption capacity strongly depends on the polarity of the substrate with respect to the solvent. In several instances solvent and polarity effects are heavily superimposed on the pore size effects. Adsorption isotherms, rates and hydrogenation of the substrates are reported and discussed.  相似文献   

16.
Multi-functional sites MOFs have been explored as a new type of heterogeneous catalytic materials, which can be constructed by various post-synthetic modifications.  相似文献   

17.
Immobilization of functional sites within metal-organic frameworks (MOFs) is very important for their ability to recognize small molecules and thus for their functional properties. The metalloligand approach has enabled us to rationally immobilize a variety of different functional sites such as open metal sites, catalytic active metal sites, photoactive metal sites, chiral pore environments, and pores of tunable sizes and curvatures into mixed metal-organic frameworks (M'MOFs). In this Minireview, we highlight some important functional M'MOFs with metalloligands for gas storage and separation, enantioselective separation, heterogeneous asymmetric catalysis, sensing, and as photoactive and nanoscale drug delivery and biomedical imaging materials.  相似文献   

18.
Liu TF  Zhang W  Sun WH  Cao R 《Inorganic chemistry》2011,50(11):5242-5248
A conjugated ligand, 2-(carboxylic acid)-6-(2-benzimidazolyl) pyridine (Hcbmp), and a series of Lanthanide metal-organic frameworks (MOFs) [Ln(2)(cbmp)(ox)(3)(H(2)O)(2)](2)·2H(3)O(+)·7H(2)O (Ln = Sm (3), Eu (4), and Gd (5), H(2)ox = oxalic acid) have been designed and assembled. To elucidate how the conjugated ligands modulate the structures and luminescence properties, we carried out the structural characterizations and luminescence studies of complexes 3 and 4, and their corresponding oxalate complexes [Ln(ox)(1.5)(H(2)O)(3)]·2H(2)O (Ln = Sm (1) and Eu (2)) were also investigated for comparison. The changes of luminescence behaviors upon dehydration and D(2)O-rehydration processes are presented and discussed in detail. The results indicated that, the cbmp(-) ligands distribute on both sides of the ox(-)-Ln bilayer network to construct a sandwich structure. Moreover, the lowest triplet state of cbmp(-) ligands can match well the energy levels of the Sm(3+) and Eu(3+) cations which allow the preparation of new Ln-MOF materials with enhanced luminescence properties. Meanwhile, the crystallinity of solid states produces more substantial change in the luminescence behaviors than removal or replacement of effective nonradiative relaxers.  相似文献   

19.
Gao HL  Yi L  Zhao B  Zhao XQ  Cheng P  Liao DZ  Yan SP 《Inorganic chemistry》2006,45(15):5980-5988
The self-assembly of 4-hydroxypyridine-2,6-dicarboxylic acid (H(3)CAM) and pyridine-2,6-dicarboxylic acid (H2PDA) with Zn(II) salts under hydrothermal conditions gave two novel coordination polymers {[Zn(HCAM)].H2O}n (1) and {[Zn(PDA)(H2O)(1.5)]}n (1a). 1 and 1a comprise of a 2D (4,4) net and a 1D zigzag chain, respectively, in which a new coordination mode of PDA is found. The reactions of H(3)CAM and H2PDA with Nd2O3 in the M/L ratio 2:3 gave {[Nd2(HCAM)3(H2O)4].2H2O}n (2) and {[Nd(2)(PDA)3(H2O)(3)].0.5H2O}n (2a). In 2, a square motif as a building block constructed by four Nd(III) ions was further assembled into a highly ordered 2D (4,4) grid. 2a is a 3D microporous coordination polymer. It is interesting to note that, when Ln(III) salts rather than oxides were employed, the reaction produced {[Ln(CAM)(H2O)3].H2O}n (Ln = Gd, 3; Dy, 4; Er, 5) for H(3)CAM and {[Gd2(PDA)3(H2O)3].H2O}n (3a) for H2PDA. 3-5 are 2D coordination polymers with a 3(3)4(2) uniform net, where hydroxyl groups of H3CAM coordinate with metal ions. The reaction of H3CAM and Er2O3 instead of Er(ClO4)3 produced {[Er2(HCAM)3(H2O)4].2H2O}n (6). The compounds 2a and 3a, 2 and 6 are isomorphous. The stereochemical and supramolecular effects of hydroxyl groups result in the dramatic structural changes from 1D (1a) to 2D (1) and from 2D (2) to 3D (2a). When Ln(III) salts instead of Ln2O3 were employed in the hydrothermal reactions with H(3)CAM, different self-assembly processes gave the products of different metal/ligand ratio with reactants (3-5).  相似文献   

20.
Three new metal-organic framework isomers have been synthesized by using the organic linker 5-triazole isophthalic acid and Mn(NO(3))(2)·xH(2)O. Structural conversions from non-porous to porous MOFs due to the template effect have been observed. The cross-sectional pore apertures of the resulting Mn-MOFs are comparable to the molecular dimensions of the template (pyrazine and 4,4'-bipyridine). The periodic increased porosity in Mn-MOFs depending on the size of the template used has been further confirmed by the CO(2) adsorption isotherms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号