首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
倪永年  黄春芳 《分析化学》2002,30(8):994-999
评述了化学计量学方法在生产过程分析中各个方面 ,如过程优化、过程模拟、仪器及仪器校正、过程监测等方面的应用 ,并展望了化学计量学在过程分析中的应用前景  相似文献   

2.
Broadband dielectric measurements for 65 wt % ethylene glycol oligomer (EGO)-water mixtures with one to six repeat units of EGO molecules were performed in the frequency range of 10 microHz-10 GHz and the temperature range of 128-298 K. In the case of the water-EGO mixtures with one and two repeat units of the EGO molecule (small EGO), the shape of the dielectric loss peak of the primary process is asymmetrical about the logarithm of the frequency of maximum loss above the crossover temperature, T(C). The asymmetric process continues to the alpha process at a low frequency, and an additional beta process appears in the frequency range higher than that of the alpha process below T(C). In contrast, the water-EGO mixtures with three or more repeat units of the EGO molecule (large EGO) show a broad and symmetrical loss peak of the primary process above T(C). The symmetric process continues to the beta process, and an additional alpha process appears in the frequency range lower than that of the beta process below T(C). These different scenarios of the alpha-beta separation related to the shape of the loss peak above T(C) are a result of the difference in the cooperative motion of water and solute molecules. The solute and water molecules move cooperatively in the small EGO-water mixtures above T(C), and this cooperative motion leads to the asymmetric loss peak above T(C) and the alpha process below T(C). For the large EGO-water mixtures, the spatially restricted motion of water confined by solute molecules leads to the symmetric loss peak above T(C) and the beta process below T(C).  相似文献   

3.
Oil Palm Frond (OPF) is one of lignocellulosic biomass, which can be utilized as raw material for bioethanol production. Bioethanol is produced as alternative energy to substitute gasoline. There are four steps in bioethanol production from OPF, i.e pretreatement, saccharification, fermentation and purification process. In this study, optimization of saccharification and fermentation process for OPF was investigated. Two methods and the variations of enzyme concentration were carried out in the saccharification and fermentation process. Separate hydrolysis and fermentation process (SHF) and simultaneous saccharification and fermentation process (SSF) were conducted to produce ethanol optimally. Variations of enzyme concentration used in this process were 10, 20, 30 and 40 FPU/g substrate. The result shows that the highest ethanol concentration can be obtained in SSF process with 30 FPU/g substrate of enzyme concentration. The process produced 59.20 g/L ethanol (95.95% yield ethanol) at 96 h of SSF process.  相似文献   

4.
The nitration of methylnaphthalenes with NO(2)BF(4) and NOBF(4) was examined in order to shed light on the controversial aromatic nitration mechanism, electrophilic vs charge-transfer process. The NO(2)(+) nitration of 1,8-dimethylnaphthalene showed a drastic regioselectivity change depending on the reaction temperature, where ortho-regioselectivity at -78 degrees C and para-regioselectivity at 0 degrees C were considered to reflect the electrophilic and the direct or alternative charge-transfer process, respectively, because the NO(+) nitration through the same reaction intermediates as in the NO(2)(+) nitration via a charge-transfer process resulted in para-regioselectivity regardless of the reaction temperature. The NO(2)(+) nitration of redox potential methylnaphthalenes higher than 1,8-dimethylnaphthalene gave a similar ortho-regioselectivity enhancement to 1,8-dimethylnaphthalene at lower temperature, thus reflecting the electrophilic process. On the other hand, the NO(2)(+) nitration of redox potential methylnaphthalenes lower than 1,8-dimethylnaphthalene showed para-regioselectivity similar to the NO(+) nitration, indicating the direct or alternative charge-transfer process. In the presence of strong acids where the direct charge-transfer process will be suppressed by protonation, the ortho-regioselectivity enhancement was observed in the NO(2)(+) nitration of 1,8-dimethylnaphthalene, suggesting that the direct charge-transfer process could be the main process to show para-regioselectivity. These experimental results imply that the NO(2)(+) nitration proceeds via not only electrophilic but also direct charge-transfer processes, which has been considered to be unlikely because of the high energy demanding process of a bond coordination change between NO(2)(+) and NO(2). Theoretical studies at the MP2/6-31G(d) level predicted ortho- and para-regioselectivity for the NO(2)(+) nitration via electrophilic and charge-transfer processes, respectively, and the preference of the direct charge-transfer process over the alternative one, which support the experimental conclusion  相似文献   

5.
Broad-band dielectric measurements for fructose-water mixtures with fructose concentrations between 70.0 and 94.6 wt% were carried out in the frequency range of 2 mHz to 20 GHz in the temperature range of -70 to 45 degrees C. Two relaxation processes, the alpha process at lower frequency and the secondary beta process at higher frequency, were observed. The dielectric relaxation time of the alpha process was 100 s at the glass transition temperature, T(g), determined by differential scanning calorimetry (DSC). The relaxation time and strength of the beta process changed from weaker temperature dependences of below T(g) to a stronger one above T(g). These changes in behaviors of the beta process in fructose-water mixtures upon crossing the T(g) of the mixtures is the same as that found for the secondary process of water in various other aqueous mixtures with hydrogen-bonding molecular liquids, polymers, and nanoporous systems. These results lead to the conclusion that the primary alpha process of fructose-water mixtures results from the cooperative motion of water and fructose molecules, and the secondary beta process is the Johari-Goldstein process of water in the mixture. At temperatures near and above T(g) where both the alpha and the beta processes were observed and their relaxation times, tau(alpha) and tau(beta), were determined in some mixtures, the ratio tau(alpha)/tau(beta) is in accord with that predicted by the coupling model. Fixing tau(alpha) at 100 s, the ratio tau(alpha)/tau(beta) decreases with decreasing concentration of fructose in the mixtures. This trend is also consistent with that expected by the coupling model from the decrease of the intermolecular coupling parameter upon decreasing fructose concentration.  相似文献   

6.
Jo SH  Lee SY  Park KM  Yi SC  Kim D  Mun S 《Journal of chromatography. A》2010,1217(45):7100-7108
In this study, a three-zone carousel process based on a proper molecular imprinted polymer (MIP) resin was developed for continuous separation of Cu(2+) from Mn(2+) and Co(2+). For this task, the Cu (II)-imprinted polymer (Cu-MIP) resin was synthesized first and used to pack the chromatographic columns of a three-zone carousel process. Prior to the experiment of the carousel process based on the Cu-MIP resin (MIP-carousel process), a series of single-column experiments were performed to estimate the intrinsic parameters of the three heavy metal ions and to find out the appropriate conditions of regeneration and re-equilibration. The results from these single-column experiments and the additional computer simulations were then used for determination of the operating parameters of the MIP-carousel process under consideration. Based on the determined operating parameters, the MIP-carousel experiments were carried out. It was confirmed from the experimental results that the proposed MIP-carousel process was markedly effective in separating Cu(2+) from Mn(2+) and Co(2+) in a continuous mode with high purity and a relatively small loss. Thus, the MIP-carousel process developed in this study deserves sufficient attention in materials processing industries or metal-related industries, where the selective separation of heavy metal ions with the same charge has been a major concern.  相似文献   

7.
The aim of this study was to propose a Process Analytical Technology (PAT) strategy for the quantitative in-line monitoring of an aqueous pharmaceutical suspension using Raman spectroscopy. A screening design was used to study the significance of process variables (mixing speed and height of the stirrer in the reactor) and of formulation variables (concentration of the active pharmaceutical ingredient (API) ibuprofen and the viscosity enhancer (xanthan gum)) on the time required to homogenize an aqueous pharmaceutical model suspension as response variable. Ibuprofen concentration (10% and 15% (w/v)) and the height of stirrer (position 1 and 2) were discrete variables, whereas the viscosity enhancer (concentration range: 1-2 g L-1) and the mixing speed (700-1000 rpm) were continuous variables. Next, a multilevel full factorial design was applied to study the effect of the remaining significant variables upon the homogenization process and to establish the optimum conditions for the process. Interactions between these variables were investigated as well. During each design experiment, the conformity index (CI) method was used to monitor homogeneity of the suspension mixing system in real-time using Raman spectroscopy in combination with a fibre optical immersion probe. Finally, a principal component regression (PCR) model was developed and evaluated to perform quantitative real-time and in-line measurements of the API during the mixing process. The experimental design results showed that the suspension homogenization process is an irregular process, for which it is impossible to model the studied variables upon the measured response variable. However, applying the PCR model it is possible to predict in-line and real-time the concentration of the API in a suspension during a mixing process. In this study, it is shown that Raman spectroscopy is a suitable PAT tool for the control of the homogenization process of an aqueous suspension. Raman spectroscopy not only allowed real-time monitoring of the homogeneity of the suspension, but also helped (in combination with experimental design) to understand the process. Further, the technique allowed real-time and in-line quantification of the API during the mixing process.  相似文献   

8.
We report the observation of an unusual relaxation process in depolarized light scattering spectra of polybutadiene (PBD) with two different vinyl contents. The process showed up in the gigahertz frequency range with relatively mild temperature dependence and was similar to a secondary relaxation process. The most surprising observation was that the process exists even at high temperatures and does not merge with the segmental relaxation up to a temperature of 400 K (T > 2Tg). Possible mechanisms of this particular relaxation in PBD are discussed. The process is compared to the so‐called E process, double‐bond hopping process, and dielectric β process. We emphasize that this process differs from the dielectric β process, is unique for 1,4‐PBD, and has not been observed in other polymers. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 994–999, 2004  相似文献   

9.
A techno-economic analysis of two different bioprocesses was conducted, one for the conversion of propylene to propylene oxide (PO) and other for conversion of styrene to styrene epoxide (SO). The first process was a lipase-mediated chemo-enzymatic reaction, whereas the second one was a one-step enzymatic process using chloroperoxidase. The PO produced through the chemo-enzymatic process is a racemic product, whereas the latter process (based on chloroperoxidase) produces an enantio-pure product. The former process thus falls under the category of high-volume commodity chemical (PO); whereas the latter is a low-volume, high-value product (SO).A simulation of the process was conducted using the bioprocess engineering software SuperPro Designer v6.0 (Intelligen, Inc., Scotch Plains, NJ) to determine the economic feasibility of the process. The purpose of the exercise was to compare biocatalytic processes with existing chemical processes for production of alkene expoxides. The results show that further improvements are needed in improving biocatalyst stability to make these bioprocesses competitive with chemical processes.  相似文献   

10.
A novel method, the program process of microwave irradiation (PPMI), which commendably integrates good qualities of microwave irradiation and a programmed heating process, is presented to synthesize high-quality CdTe nanocrystals in aqueous solution. Microwave irradiation, which acts as the heating mode of PPMI, is highly favorable for a narrow size distribution and low concentration of surface defects of nanocrystals. On the other hand, two correlative processes (the first process and the second process) are utilized in PPMI to actualize the programmed heating process, which is an effective strategy to improve the quality of nanocrystals. Thus, a series (diameters approximately 2-4 nm) of highly luminescent (PLQY approximately 30-68%) CdTe nanocrystals were rapidly prepared (reaction time approximately 1-30 min) in aqueous phase through PPMI.  相似文献   

11.
A three-step model of the transitional phase inversion (TPI) process for the formation of water-in-oil (W/O) emulsions is presented. Three types of emulsions exist in an emulsification process at different oil–water ratios and hydrophilic–lipophilic balance (HLB). A stable W/O emulsion was obtained using Sorbitan oleate (Span 80) and polyoxyethylenesorbitan monooleate (Tween 80) with a specified HLB and oil volume fraction. Oil was added into water, which contained the water-soluble surfactant, to dissolve the oil-soluble surfactant. This route allowed TPI to occur, and an interesting emulsification process was observed by varying the HLB, which corresponded to the change in the oil–water ratio. Two types of emulsions in the emulsification process were found: transition emulsion 1 (W/O/W high internal phase emulsion) and target emulsion 2 (W/O emulsion with low viscosity). This study describes the changes that occurred in the emulsification process.  相似文献   

12.
The acid catalyzed sol-gel reaction in the mixed binder system, 3-glycidoxypropyltrimethoxysilane (GPTS)/3-aminopropyltriethoxysilane (APTS) was investigated and one step and two step synthesis process were compared. Hydrolysis product was observed using the 1H, 13C NMR and Raman spectra. Especially, based on the Raman spectra, epoxy ring opening was observed, varying the ratio of GPTS to APTS. The two step process made clear sol, while the one step process resulted in a milky suspension. According to the Raman spectra, the epoxy ring opening reaction kinetics proceeded slower in the two step process than one step process. Throughout the two step process, it was possible to apply the binder for the coating of substrate.  相似文献   

13.
The theory of normal pulse voltammetry (NPV) for complex multistep multielectron transfer processes on a plane electrode was advanced and applied to the completely irreversible process of methanol oxidation to formic acid in the potential range from 0.3 to 0.8 V versus Ag/AgCl. The kinetic parameters for this process, such as the standard rate constant (k0) and anodic transfer coefficient (alpha) for this irreversible heterogeneous electron transfer process at the electrode/solution interface and apparent diffusion coefficient (D(app)) for the homogeneous charge transfer process within liquid film near the electrode surface, were obtained with NPV theory from analyzing the dependence of current-potential curves upon the sampling times. The results showed that this process is truly a very slow, completely irreversible kinetic process, as k0 is in the order of 10(-9) cm/s for the rate-determining step. The values of k0 and D(app) decreased with the increase of methanol concentration, while alpha was independent of the concentration of methanol and its value was 0.35 +/- 0.05. Theoretical fitting is very consistent with the experimental data.  相似文献   

14.
Cacha?a samples were studied by means of comprehensive two-dimensional gas chromatography and time-of-flight mass spectrometry (GCxGC/TOFMS) during the fermentation process and after ageing in different wood materials. The analyses of the aroma compounds were performed after headspace-solid phase microextraction method (HS-SPME) using an 85microm polyacrylate (PA) fibre. Fingerprint monitoring of the distillation process allowed the easy determination of the turning points of the process and high-resolution comparison of cabe?a (head), cora??o (core) and cauda (tail) fractions. The ageing process in different wood materials was well characterised through fingerprint similarity observations; in the absence of a suitable metric for expressing the overall similarity, here we use a visual and retention time comparison to identify co-incident peaks and those that differ between samples. For quality control purposes, a simple observation of the contour plots obtained can thus allow the identification of the type of wood used in the ageing process, and the process of ageing, without further statistical treatment or peak identifications. In this manner, peaks, which discriminated most between the different mixtures studied were readily found, i.e. unique compounds were identified in each stage of the distillation process. Approximate first dimension linear retention indices (LRI) for these identified compounds were calculated in a bi-dimensional polar/non-polar column set in the GCxGC experiment and were used in conjunction with mass spectral library searching for tentative identification. Along the progression of the distillation process, 70 compounds appear to visually discriminate between samples and their retention indices are indicated, presenting good correlation with literature data.  相似文献   

15.
In this study, the role of oxygen in the regeneration of Fe(III) during the degradation of atrazine in UV/Fe(III) process was studied. The degradations of atrazine in UV/Fe(III) and UV-photolysis processes in the presence and absence of oxygen were compared. The results showed that the degradations of atrazine in these processes followed the pseudo-first-order kinetics well. The process exhibiting the highest rate constant (k) was UV/Fe(III)/air process, because k-value for UV/Fe(III)/air process was about 1.47, 2.23 and 2.56 times of those for UV/Fe(III)/N2, UV/air and UV/N2 processes, respectively. The degradation of atrazine was enhanced by oxygen in UV/Fe(III) process and the enhancement was more remarkable at higher initial concentrations of Fe(III). The investigation into the changes of Fe(III) concentrations demonstrated that the presence of oxygen led to the regeneration of Fe(III), which resulted in the enhancement of atrazine degradation. With air bubbling, the ferric ions were 25% more than those with N2 bubbling. The experimental data showed the regeneration of Fe(III) required the excited organic molecules and oxygen and on the basis of these results, the regeneration mechanism of Fe(III) was proposed. It was also found that due to the oxidation of Fe(II), the degradation of atrazine in UV/Fe(II)/air process was effective at a low Fe(II) concentration of 7 mg/L, similar to that in UV/Fe(III)/air process. This study makes clear the role of oxygen in the regeneration of Fe(III), and thus it provides a guide to reduce the input of Fe(III) and is helpful to the application of UV/Fe(III) process in practice.  相似文献   

16.
According to the Guide to the Expression of Uncertainty in Measurement (GUM, JCGM 100: 2008), the calibration process and its uncertainty evaluation should be expressed in terms of mathematical function(s) of input quantities. However, in practice, expressing measurement or calibration in a way that is fully compliant with GUM might be unrealistic and require a clear definition of the calibration process itself. Depending on the applied calibration process, different modelling equations with various complexities can be written. In this paper, four different approaches are given to model the calibration process of industrial platinum-resistance thermometers.  相似文献   

17.
Many phosphatases make use of metal ions to aid catalysis of phosphate ester hydrolysis. Here, we investigate the impact of metal ions on the potential energy surface (PES), and hence the preferred reaction mechanism, for a simple model for hydrolysis of phosphate ester monoanions. We show that, while both associative (A(N) + D(N)) and dissociative (D(N) + A(N)) mechanisms are represented on the potential energy surfaces both in the presence and absence of metal ions, the D(N) + A(N) process is favoured when there are no metal ions present and the A(N) + D(N) process is favoured in the presence of two metal ions. A concerted (A(N)D(N)) process is also available in the presence of two metal ions, but proceeds via a high-energy transition state. In the presence of only a single metal ion the A(N)D(N) process is the most favoured, but still proceeds via a high-energy transition state. Thus, we conclude that metallo-enzyme phosphatases are likely to utilise an associative process, while those that function without metal ions may well follow a dissociative process.  相似文献   

18.
In this work, a new approach for acetone–butanol–ethanol (ABE) production has been proposed. Direct fermentation of native starches (uncooked process) was investigated by using granular starch hydrolyzing enzyme (GSHE) and Clostridium saccharoperbutylacetonicum N1-4. Even the process was carried out under suboptimal condition for activity of GSHE, the production of ABE was similar with that observed in conventional process or cooked process in terms of final solvent concentration (21.3?±?0.4 to 22.4?±?0.4 g/L), butanol concentration (17.5?±?0.4 to 17.8?±?0.3 g/L) and butanol yield (0.33 to 0.37 g/g). The production of solvents was significantly dependent on the source of starches. Among investigated starches, corn starch was more susceptible to GSHE while cassava starch was the most resistant to this enzyme. Fermentation using native corn starch resulted in the solvent productivity of 0.47 g/L h, which was about 15 % higher than that achieved in cooked process. On the contrary, uncooked process using cassava and wheat starch resulted in the solvent productivity of 0.30 and 0.37 g/L h, which were respectively about 30 % lower than those obtained in cooked process. No contamination was observed during all trials even fermentation media were prepared without sterilization. During the fermentation using native starches, no formation of foam is observed. This uncooked process does not require cooking starchy material; therefore, the thermal energy consumption for solvent production would remarkably be reduced in comparison with cooked process.  相似文献   

19.
Many high quality products are produced in a batch wise manner. One of the characteristics of a batch process is the recipe driven nature. By repeating the recipe in an identical manner a desired end-product is obtained. However, in spite of repeating the recipe in an identical manner, process differences occur. These differences can be caused by a change of feed stock supplier or impurities in the process. Because of this, differences might occur in the end-product quality or unsafe process situations arise. Therefore, the need to monitor an industrial batch process exists. An industrial process is usually monitored by process measurements such as pressures and temperatures. Nowadays, due to technical developments, spectroscopy is more and more used for process monitoring. Spectroscopic measurements have the advantage of giving a direct chemical insight in the process. Multivariate statistical process control (MSPC) is a statistical way of monitoring the behaviour of a process. Combining spectroscopic measurements with MSPC will notice process perturbations or process deviations from normal operating conditions in a very simple manner. In the following an application is given of batch process monitoring. It is shown how a calibration model is developed and used with the principles of MSPC. Statistical control charts are developed and used to detect batches with a process upset.  相似文献   

20.
Microwave-assisted photocatalytic (MAPC) degradation of atrazine over nanotitania coated multiwalled carbon nanotubes (TiO(2)/MWCNTs) was investigated in this study. As a result, degradation efficiency of atrazine over TiO(2)/CNTs prepared by hydrothermal method was about 30% and 20% higher than that of titania P25 and anatase prepared hydrothermally in given time. The TiO(2)/CNTs composite samples were characterized by TGA-DSC, TEM, UV-vis DRS, XRD and BET, to explain the reason for efficient degradation and adsorption process of atrazine. Microwave thermal effect in this process was also investigated. Intermediates of degradation both in MAPC process and microwave-assisted photodegradation (MAPD) process were identified by LC/MS. It suggests that MWCNTs have special effects on atrazine degradation during MAPC process, like strong microwave absorption capability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号