首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
以钙钛矿型复合氧化物LaNi0.9Co0.1O3和LaNi0.9Cu0.1O3为前驱体制备了Ni-Co/La2O3和Ni-Cu/La2O3双金属合金催化剂。结果表明,双金属合金催化剂中,各组分间相互稀释,具有较强的抗烧结性能;催化剂表面的积炭主要取决于CO在催化剂表面的吸附形态,Ni-Co双金属催化剂中,Co掺杂改变了CO在催化剂表面的吸附形式和吸附强度,使得Ni-Co双金属催化剂具有较强的抗积炭性能。Ni-Co双金属合金催化剂用于CO甲烷化反应时,显现出较好的活性、选择性和稳定性。  相似文献   

2.
In the absence of solvent, the first-row transition-metal acetylacetonate complexes and RuCl2(PPh3)3 give fairly high turnovers for the allylic oxidation of cyclohexene under atmospheric pressure of oxygen. Synergetic effect is observed for the oxidation of cyclohexene by using M(acac)n−RuCl2(PPh3)3 bimetallic catalysts.  相似文献   

3.
Gold-palladium catalysts supported on cerium oxide were synthesized with the double complex salts. X-ray photoelectron spectroscopy (XPS) and other physicochemical methods (TEM, TPR) were used to demonstrate that synthesis of highly active palladium catalysts requires the oxidative treatment stimulating the formation of a catalytically active surface solid solution Pd x Ce1?x O2, which is responsible for the lowtemperature activity (LTA) in the reaction CO + O2. In the case of gold catalysts, active sites for the lowtemperature oxidation of CO are represented by gold nanoparticles and its cationic interface species. Simultaneous deposition of two metals increases the catalyst LTA due to interaction of both gold and palladium with the support surface to form a Pd1?x CexO2 solid solution and cationic interface species of palladium and gold on the boundary of Pd-Au alloy particles anchored on the solid solution surface.  相似文献   

4.
In this work, we present a detailed study concerning the evaluation of the metal-support interaction in high activity gold catalysts for CO oxidation. Using the colloidal deposition method, model catalysts were prepared, which allow the isolation of the effect of the support on the catalytic activity. Prefabricated gold particles were thus deposited on different support materials. Since the deposition process did not change the particle sizes of the gold particles, only the influence of the support could be studied. TiO2, Al2O3, ZrO2, and ZnO were used as support materials. Catalytic tests and high resolution transmission electron microscopy clearly show that the support contributes to the activity. However, our results are not in line with the distinction between active and passive supports based on the semiconducting properties of the oxidic material. The most active catalysts were obtained with TiO2 and Al2O3, while ZnO and ZrO2 gave substantially less active catalysts. Furthermore, the effect of other important parameters on the catalytic activity (i.e., particles size distribution, calcination temperature, and aging time for a Au/TiO2 catalyst) has also been studied. Using this preparation route, the catalysts show high-temperature stability, size dependent activity, and a very good long-term stability.  相似文献   

5.
The oxidation of CO in the presence of hydrogen (PROX process) was investigated on bimetallic Au-Rh catalysts at 300–373 K by Fourier transform infrared spectroscopy and mass spectroscopy. The effects of catalyst composition, reaction temperature and composition of the reacting gas mixtures have been studied. The IR studies revealed the formation of bi- and monodentate carbonates, bicarbonates and hydrocarbonates on the catalysts surfaces; these surface species proved to be not involved in the surface reactions. The formation of adsorbed formaldehyde was observed on all surfaces, except 1% (0.25Au+0.75Rh)/TiO2. Adsorbed CO2 (as the surface product of CO oxidation) was not detected on any surface. The presence of both O2 and H2 reduced the surface concentration of CO adsorbed on the metallic sites. Mass spectroscopic analysis of the gas phase showed that gaseous CO2 was formed in the highest amount in the CO+O2 mixture, the presence of H2 suppressed the amount of CO2 produced. This negative effect of H2 was the lowest on the 1% Rh/TiO2 and 1% (0.25Au+0.75Rh)/TiO2 catalysts.  相似文献   

6.
A Au/Ni(111) surface alloy catalyzes the oxidation of CO at low temperature by at least three distinct mechanisms. At the lowest temperature of 70 K, molecularly adsorbed O2, spectroscopically characterized as peroxo or superoxo species bound at multiple sites with vibrational frequencies of 865 and 950 cm-1, is the reactant with CO. Between 105 and 125 K, CO2 production coincides with O2 dissociation, suggesting a "hot atom" mechanism. Above 125 K, adsorbed CO reacts with atomically adsorbed O atoms. These results show that nanosize Au clusters bound to oxide supports are not a necessary condition for Au-catalyzed, low-temperature CO oxidation.  相似文献   

7.
Bimetallic catalysts based a Co-Fe/carrier system are prepared via the consecutive and combined deposition of metals on Al2O3 and MgO · Al2O3. The dynamics of CO hydrogenation at 300°C is studied.  相似文献   

8.
CO oxidation was investigated on various powder oxide supported Pd catalysts by temperature-programmed reaction.The pre-reduced catalysts show significantly higher activities than the pre-oxidized ones.Model studies were performed to better understand the oxidation state,reactivities and stabilities of partially oxidized Pd surfaces under CO oxidation reaction conditions using an in situ infrared reflection absorption spectrometer(IRAS).Three O/Pd(100)model surfaces,chemisorbed oxygen covered surface,surface oxide and bulk-like surface oxide,were prepared and characterized by low-energy electron diffraction(LEED)and Auger electron spectroscopy(AES).The present work demonstrates that the oxidized palladium surface is less active for CO oxidation than the metallic surface,and is unstable under the reaction conditions with sufficient CO.  相似文献   

9.
High surface area carbon-supported Pt, PtRh, and PtSn catalysts were synthesized by microwave-assisted polyol procedure and tested for ethanol oxidation in perchloric acid. The catalysts were characterized by thermogravimetric analysis (TGA), X-ray diffraction (XRD), scanning tunnelling microscopy (STM), TEM, and EDX techniques. STM analysis of unsupported catalysts shows that small particles (~2?nm) with a narrow size distribution are obtained. TEM and XRD examinations of supported catalysts revealed an increase in particle size upon deposition on carbon support (diameter?~?3?nm). The diffraction peaks of the bimetallic catalysts in X-ray diffraction patterns are slightly shifted to lower (PtSn/C) or higher (PtRh/C) 2θ values with respect to the corresponding peaks at Pt/C catalyst as a consequence of alloy formation. Oxidation of ethanol is significantly improved at PtSn/C with the onset potential shifted for?~?150?mV to more negative values and the increase of activity for approximately three times in comparison to Pt/C catalyst. This is the lowest onset potential found for ethanol oxidation at PtSn catalysts with a similar composition. Chronoamperometric measurements confirmed that PtSn/C is notably less poisoned than Pt/C catalyst. PtRh/C catalyst exhibited mild enhancement of overall electrochemical reaction in comparison to Pt/C.  相似文献   

10.
Platinum has been introduced into pillared clay as a complex with the organosilicon amine N’-[3-(trimethoxysilyl)propyl]diethyltriamine, as a complex with the organosilicon amine and zirconyl chloride, as an ammine complex, and by impregnation with a chloroplatinic acid solution followed by hydrogen reduction. The catalytic activity of the Pt-containing clays in CO oxidation in excess hydrogen was also studied. The last procedure yields the most active Pt-containing pillared clay. Calcium has been introduced into pillared clay by ion exchange, and it was found that the catalytic activity of the clay decreases with increasing Ca content.  相似文献   

11.
Pd/Ni bimetallic catalysts were prepared by replacement reactions, characterized by X-ray diffraction, CO chemisorption and H2 temperature-programmed desorption, and evaluated for hydrogenation of cyclohexene, styrene and acetone. The results show that Pd atoms are monolayer-dispersed on the Ni surface in these Pd/Ni catalysts. Consequently, Pd/Ni catalysts are much more active than Pd/Ni and Pd/c-Al2O3 with the same Pd loading prepared by the conventional impregnation method. __________ Translated from Chinese Journal of Catalysis, 2007, 28(8): 676–680 [译自: 催化学报]  相似文献   

12.
Catalytic properties of the Ru-Tc/support (-Al2O3, Y2O3, and SiO2) systems in the dehydrogenation of cyclohexane have been studied. The catalytic activity of the bimetallic catalysts depends on the nature of the support. A nonadditive increase in the catalytic activity of the bimetallic catalysts in comparison with monometallic samples was established. The value of the synergistic effect depends on the ratio between the amounts of the supported metals and the nature of the support. By using the diffuse reflectance spectra in UV- and visible regions and hydrogen chemisorption techniques, the modifying influence of the ionic metal species on the catalytic properties was shown.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 8, pp. 1959–1963, August, 1996.  相似文献   

13.
采用微波加热法制备了炭黑XC-72负载的系列AuPt/C催化剂和Pt/C催化剂,利用XRD和TEM技术对催化剂的组成、结构和形貌进行了表征,通过循环伏安法和CO溶出循环伏安法考察了在含有Keggin型H3PM012O40支持电解质中催化剂的抗CO中毒能力.结果发现,AuPt/C催化剂为非合金双金属体系,粒径范围4~10...  相似文献   

14.
15.
A number of platinum-based catalysts bonded on carbon fiber karbopon were prepared using alcohol solutions of H2PtCl6. The catalytic activity of the samples was determined in the low-temperature oxidation of carbon monoxide by oxygen. The effect of the solvent nature of the precursor on the activity of the catalysts was determined. The best results were obtained in the presence of 1.5% Pt/karbopon catalyst prepared using isobutyl alcohol; 100% CO conversion was achieved in respiratory treatment (12000 h?1, room temperature).  相似文献   

16.
XPS and chemisorption studies of the surface composition of a Pd–Ag alloy (5% Pd) before and after its application in CO oxidation have been performed. It is shown that in a freshly prepared sample the bulk and surface layer compositions are the same. High-temperature treatment of the catalyst in the reaction medium leads to a thermodynamic equilibrium between surface and bulk.
Pd–Ag Pd 5% CO . , . .
  相似文献   

17.
金单原子催化剂上一氧化碳低温氧化   总被引:1,自引:0,他引:1  
CO低温氧化对于基础研究和实际应用均具有重要意义.自上世纪八十年代日本的 Haruta教授发现氧化物负载金催化剂对 CO氧化的超高活性以来,负载金催化剂受到了广泛关注与深入研究,被认为是目前活性最高的 CO氧化催化剂.在诸多影响 CO氧化活性的因素中,纳米金的粒子尺寸是最重要因素之一.目前主流观点认为对于 CO氧化,纳米金有一个最优尺寸范围,在0.5–5 nm,而 Au原子/离子(Au3+, Au+)的活性则低一到两个数量级.因此,一般认为负载金单原子催
  化剂对于 CO氧化反应的活性要比金纳米粒子和团簇低很多.然而,最近几年的理论与实验研究均表明,金单原子负载于合适的载体上可以显示出与金纳米粒子和团簇相当的活性.本文对这些新进展进行综述,阐述金单原子催化剂对 CO氧化的独特反应性能. Gates教授研究组进行了大量关于正价金对 CO氧化影响的研究,其中包括孤立的金原子(Au+).他们的研究发现, CO氧化活性随价态降低而降低,表明正价金对 CO氧化至关重要.此外,他们的研究也表明,孤立金原子对 CO氧化的活性(TOF)比金纳米粒子低一到两个数量级.然而,在他们的研究中,有几个因素可能导致催化剂的低活性.首先,他们一般采用非或弱还原性的载体.而载体的还原性对金催化剂上 CO氧化活性影响非常巨大.另外,他们所用的金原子前驱体为配合物,在催化剂制备与反应过程中配体并没有去除,可能也是导致催化剂活性低的原因之一.与此相反,张涛课题组近期采用氯金酸为前驱体,通过简单的吸附浸渍法制备了一系列负载金单原子催化剂.同时用相同的载体制备了负载金纳米粒子催化剂进行对比,可以排除载体等其它影响因素.对比结果显示,单原子催化剂均显示出与纳米粒子相当的 TOF(单位表面 Au原子)和更高的反应速率(单位重量金).首先制备了氧化铁负载金单原子催化剂,该催化剂在室温即展现出可观活性, TOF值与2–3 nm金粒子 TOF值相当(~0.5 s–1).更有趣也更重要的是,该催化剂在高温(200oC以上)展现出非常高的反应稳定性,在200oC反应100 h无失活.在300和400oC反应50 h也无失活发生,为开发高温稳定的金催化剂提供了新途径.其次制备了氧化钴负载金单原子催化剂,该催化剂以0.05%金负载量即可实现室温全转化,其 TOF值高达1.4 s–1.然而该催化剂在达到高活性之前必须首先在反应气氛中进行高温处理,这限制了其实用性.此外,催化剂需经反应气氛活化的原因尚待进一步研究.随之又制备了氧化铈负载金单原子催化剂,对富氢条件下 CO选择氧化不仅具有高活性,而且具有极高的 CO选择性.进一步研究结合理论计算表明,高选择性来自氧化铈负载的金单原子不能解离活化氢,对于氢气氧化活性极低,从而导致 CO氧化的高选择性.理论研究方面也有进展. Camellone等计算发现金原子可以取代 CeO2(111)面上的 Ce原子形成 Au+并促进 CO氧化.然而该金原子会扩散至氧空位形成带负电荷的 Auδ-,阻止 CO和 O2吸附,因而使催化剂失活.李隽课题组利用从头算分子动力学模拟首次发现氧化铈和氧化钛负载的 Au纳米粒子在 CO氧化过程中可以形成单原子的现象,并将之称为动态单原子催化剂. Yang等则计算了二维材料 BN负载 Au单原子催化 CO氧化并发现反应优先通过三原子 E-R机理进行.  相似文献   

18.
19.
林坚  王晓东  张涛 《催化学报》2016,(11):1805-1813
CO氧化可能是多相催化领域最常见的反应,它不仅能作为探针反应研究催化剂结构、反应活性位等,而且在诸多实际过程如空气净化、汽车尾气污染物控制、燃料电池所用氢源净化等扮演重要角色.最早的 CO氧化催化剂为霍加拉特剂,其组分主要为 CuO与 MnO2混合氧化物,然而在实际应用过程中存在低温活性低、吸湿易失活等缺点.1987年, Haruta等发现湿化学法制备的氧化物负载 Au催化剂表现出非常高的低温 CO氧化活性及耐水稳定性,其 Au粒子以纳米尺度分散,进而引发了催化研究领域的“淘金热”及纳米催化研究热潮.而 CO氧化通常作为考察 Au催化剂结构性质的探针反应,也成为考核其它金属催化剂是否具有高活性的判据之一. Pt族金属上 CO氧化反应从 Langmuir等研究开始至今已有100多年,然而低温下该金属催化剂活性与 Au催化剂相比要低一个数量级.本质原因为 Pt族金属上 CO吸附较强, O2吸附与活化受到抑制,而该步骤被认为是 CO氧化的速控步,因而表现出较低的催化活性.通常 Pt族金属催化剂需要100oC以上 CO才能脱附, O2进而得以吸附.目前研究人员采取多种策略,其基本原则为削弱 Pt族金属上 CO吸附强度或者提供其它活性位供 O2吸附与活化.本综述将概括近十年来Pt族金属催化剂 CO氧化研究进展,主要总结室温甚至超低温条件下的研究成果.高活性 CO氧化催化剂主要是通过采用可还原氧化物为载体或助剂,或者改变催化剂表面性质如使表面富 OH基物种来形成. Au催化剂的研究发现,改变金属粒子尺寸极有可能获得不同寻常的催化性能,而常规的 Pt族金属催化剂研究主要是在纳米尺度.近期人们发现逐渐减小 Pt族金属粒子尺寸,从纳米到亚纳米甚至单原子时,其电荷状态逐渐呈正价形式,这有利于削弱其 CO吸附强度.此外,可通过增强金属载体间的相互作用,改变金属载体接触方式,如从核壳到交叉结联结构,构筑出更多的金属载体界面,使得 O2更容易吸附与活化或稳定更多的 OH基物种进而在此界面与吸附的 CO反应.伴随着表征技术的发展, CO氧化机理的认识也更加深入,这给催化剂的设计带来更多新的思路.(1)改变 CO吸附活化位,将 CO吸附活化位从金属转移到载体上,从而大大降低 CO吸附强度,活化的 CO物种在反应过程中容易溢流到金属载体界面处,这甚至有利于超低温度下(–100oC左右) CO氧化.(2)改变 O2活化形式. O2通常在 Pt族金属上容易以解离氧原子形式存在,通过改变载体、金属载体界面性质使得 O2以分子氧形式活化,如形成超氧或过氧物种,这有利于降低 CO氧化的活化能垒,进而提高其低温甚至超低温下 CO氧化活性.今后,设计并合成出在超低温度下能够氧化 CO的 Pt族金属催化剂将成为 CO氧化催化剂研究的重要方向之一.  相似文献   

20.
It has been shown that the selectivity of V2O5–MoO3 catalysts for benzene oxidation to maleic anhydride can be enhanced by small amounts of silver introduced by impregnation with AgNO3 solution. The effect of Ag2O additive is synergetic and increases with increasing concentration of MoO3 up to 28.5 mol %. The best effect was obtained when about 7 Ag atoms were introduced for 1000 (V+Mo) atoms at the surface.
, V2O5–MoO3 - AgNO3. Ag2O MoO3 28,5 . %. , 7 Ag 1000 (V+Mo).
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号