共查询到20条相似文献,搜索用时 15 毫秒
1.
The Benjamin-Feir instability of periodic capillary-gravity waves on a liquid layer of arbitrary uniform depth is investigated. When surface tension is present, there is always instability for some wavenumber and liquid depth and bounds on the sideband frequencies for unbounded amplification are derived. The results are compared with the slow modulation theory using an averaged Lagrangian. 相似文献
2.
A new method is presented for the computation of two-dimensional periodicprogressive surface waves propagating under the combined influence of gravity and surfacetension.The nonlinear surface is expressed by Fourier series with finite number of terms,after the computational domain is transformed into a unit circle.The dynamic boundaryequation is used in its exact nonlinear form and the coefficients of Fourier series are foundby the Nweton-Raphson method successively.This is a neat method,Yielding highprescision with little computational effort. 相似文献
3.
《Wave Motion》2014,51(1):86-99
An efficient numerical method to compute solitary wave solutions to the free surface Euler equations is reported. It is based on the conformal mapping technique combined with an efficient Fourier pseudo-spectral method. The resulting nonlinear equation is solved via the Petviashvili iterative scheme. The computational results are compared to some existing approaches, such as Tanaka’s method and Fenton’s high-order asymptotic expansion. Several important integral quantities are computed for a large range of amplitudes. The integral representation of the velocity and acceleration fields in the bulk of the fluid is also provided. 相似文献
4.
An efficient 2D non-linear numerical wave tank called LONGTANK has been developed based on a multi-subdomain (MSD) approach combined with the conventional boundary element method (BEM). The multi-subdomain approach aims at optimized matrix diagonalization, thus minimizing the computing time and reserved storage. The CPU per time step in LONGTANK simulation is found to increase only linearly with the number of surface nodes, which makes LONGTANK highly efficient especially when simulating long-time wave evolutions in space. Appropriate treatment of special points on the boundary ensures high resolution in LONGTANK simulation beyond initial deformation and breaking, which allows detailed study of breaking criterion, breaker morphology, breaking dissipation, vorticity generation, etc. Detailed numerical implementation has been given with demonstration of LONGTANK simulations. 相似文献
5.
6.
应用势流理论中的Rankine源面元法和时域步进法,求解了有限水深船舶在规则波中运动的水底压力变化。将速度势分解成基本势、局部势和记忆势,以叠模解作为基本势对自由表面条件和物面条件进行了线性化,通过在水底布置面元来满足水底条件。利用研制的水底压力-水面波浪测量系统,测量了不同入射波船模表面波形与水底压力的时历曲线,理论计算与实验结果符合较好,验证了自编程序的正确性。通过对比二者的等高线图发现,水底压力与表面波形的峰谷有较好的一致性,并且压力较波形更为平滑。 相似文献
7.
The two-dimensional problem of steady waves on water of finite depth is considered without assumptions about periodicity and symmetry of waves. A new form of Bernoulli's equation is derived, and it involves a new bifurcation parameter which is the product of the Froude number μ and the rate of flow ω. The main result obtained from this equation is the absence of waves, having sufficiently small amplitude, provided . To cite this article: V. Kozlov, N. Kuznetsov, C. R. Mecanique 333 (2005). 相似文献
8.
T. A. Bodnar’ 《Journal of Applied Mechanics and Technical Physics》2011,52(3):378-384
A solution of Nekrasov’s integral equation is obtained, and the range of its existence in the theory of steady nonlinear waves
on the surface of a finite-depth fluid is determined. Relations are derived for calculating the wave profile and propagation
velocity as functions of the ratio of the liquid depth to the wavelength. A comparison is made of the velocities obtained
using the linear and nonlinear theories of wave propagation. 相似文献
9.
Time domain simulation of the interaction between offshore structures and irregular waves in shallow water becomes a focus due to significant increase of liquefied natural gas (LNG) terminals. To obtain the time series of irregular waves in shallow water, a numerical wave tank is developed by using the meshless method for simulation of 2D nonlinear irregular waves propagating from deep water to shallow water. Using the fundamental solution of Laplace equation as the radial basis function (RBF) and locating the source points outside the computational domain, the problem of water wave propagation is solved by collocation of boundary points. In order to improve the computation stability, both the incident wave elevation and velocity potential are applied to the wave generation. A sponge damping layer combined with the Sommerfeld radiation condition is used on the radiation boundary. The present model is applied to simulate the propagation of regular and irregular waves. The numerical results are validated by analytical solutions and experimental data and good agreements are observed. Copyright © 2008 John Wiley & Sons, Ltd. 相似文献
10.
A boundary element method is proposed for studying periodic shallow water problems. The numerical model is based on the shallow water equation. The key feature of this method is that the boundary integral equations are derived using the weighted residual method and the fundamental solutions for shallow water wave problems are obtained by solving the simultaneous singular equations. The accuracy of this method is studied for the wave reflection problem in a rectangular tank. As a result of this test, it has been shown that the number of element divisions and the distribution of nodes are significant to the accuracy. For numerical examples of external problems, the wave diffraction problems due to single cylindrical, double cylindrical and plate obstructions are analysed and compared with the exact and other numerical solutions. Relatively accurate solutions are obtained. 相似文献
11.
This paper presents a parametric finite‐difference scheme concerning the numerical solution of the one‐dimensional Boussinesq‐type set of equations, as they were introduced by Peregrine (J. Fluid Mech. 1967; 27 (4)) in the case of waves relatively long with small amplitudes in water of varying depth. The proposed method, which can be considered as a generalization of the Crank‐Nickolson method, aims to investigate alternative approaches in order to improve the accuracy of analogous methods known from bibliography. The resulting linear finite‐difference scheme, which is analysed for stability using the Fourier method, has been applied successfully to a problem used by Beji and Battjes (Coastal Eng. 1994; 23 : 1–16), giving numerical results which are in good agreement with the corresponding results given by MIKE 21 BW (User Guide. In: MIKE 21, Wave Modelling, User Guide. 2002; 271–392) developed by DHI Software. Copyright © 2006 John Wiley & Sons, Ltd. 相似文献
12.
An accurate three‐dimensional numerical model, applicable to strongly non‐linear waves, is proposed. The model solves fully non‐linear potential flow equations with a free surface using a higher‐order three‐dimensional boundary element method (BEM) and a mixed Eulerian–Lagrangian time updating, based on second‐order explicit Taylor series expansions with adaptive time steps. The model is applicable to non‐linear wave transformations from deep to shallow water over complex bottom topography up to overturning and breaking. Arbitrary waves can be generated in the model, and reflective or absorbing boundary conditions specified on lateral boundaries. In the BEM, boundary geometry and field variables are represented by 16‐node cubic ‘sliding’ quadrilateral elements, providing local inter‐element continuity of the first and second derivatives. Accurate and efficient numerical integrations are developed for these elements. Discretized boundary conditions at intersections (corner/edges) between the free surface or the bottom and lateral boundaries are well‐posed in all cases of mixed boundary conditions. Higher‐order tangential derivatives, required for the time updating, are calculated in a local curvilinear co‐ordinate system, using 25‐node ‘sliding’ fourth‐order quadrilateral elements. Very high accuracy is achieved in the model for mass and energy conservation. No smoothing of the solution is required, but regridding to a higher resolution can be specified at any time over selected areas of the free surface. Applications are presented for the propagation of numerically exact solitary waves. Model properties of accuracy and convergence with a refined spatio‐temporal discretization are assessed by propagating such a wave over constant depth. The shoaling of solitary waves up to overturning is then calculated over a 1:15 plane slope, and results show good agreement with a two‐dimensional solution proposed earlier. Finally, three‐dimensional overturning waves are generated over a 1:15 sloping bottom having a ridge in the middle, thus focusing wave energy. The node regridding method is used to refine the discretization around the overturning wave. Convergence of the solution with grid size is also verified for this case. Copyright © 2001 John Wiley & Sons, Ltd. 相似文献
13.
A meshless numerical model for nonlinear free surface water wave is presented in this paper. An approach of handling the moving free surface boundary is proposed. Using the fundamental solution of the Laplace equation as the radial basis functions and locating the source points outside the computational domain, the problem is solved by collocation of only a few boundary points. Present model is first applied to simulate the generation of periodic finite‐amplitude waves with high wave‐steepness and then is employed to simulate the modulation of monochromatic waves passing over a submerged obstacle. Good agreements are observed as compared with experimental data and other numerical models. Copyright © 2005 John Wiley & Sons, Ltd. 相似文献
14.
A uniform high order method is presented for the numerical solution of a singular perturbation problem in conservative form. We firest replace the original second-order problem (1.1) by two equivalent first-order problems (1.4), i.e., the solution of (1.1) is a linear combination of the solutions of (1.4). Then we derive a uniformly O(h~m+1)accurate scheme for the first-order problems (1.4), where m is an arbitrary nonnegative integer, so we can get a uniformly O(h~m+1) accurate solution of the original problem (1.1) by relation (1.3). Some illustrative numerical results are also given. 相似文献
15.
A two-dimensional (in-plane) numerical model for surface waves propagation based on the non-linear dispersive wave approach described by Boussinesq-type equations, which provide an attractive theory for predicting the depth-averaged velocity field resulting from that wave-type propagation in shallow water, is presented. The numerical solution of the corresponding partial differential equations by finite-difference methods has been the subject of several scientific works. In the present work we propose a new approach to the problem: the spatial discretization of the system composed by the Boussinesq equations is made by a finite element method, making use of the weighted residual technique for the solution approach within each element. The model is validated by comparing numerical results with theoretical solutions and with results obtained experimentally. 相似文献
16.
A Fourier analysis has been performed for a class of upwind finite volume schemes, including the study of phase speed, group velocity, damping and dispersion. In the first part, pure gravity waves are investigated. As expected, most upwind schemes lead to a significant damping, but they exhibit a better phase behavior than most centered schemes. In the second part, the Coriolis parameter is considered and the Rossby modes are studied. In this case, all selected upwind schemes lead to a severe damping. The numerical results are also compared with those obtained by using a slope limiter approach. It is concluded that most upwind schemes with or without slope limiters present poor results for an accurate calculation of the Rossby modes. Copyright © 2008 John Wiley & Sons, Ltd. 相似文献
17.
V. V. Ostapenko 《Journal of Applied Mechanics and Technical Physics》2007,48(6):795-812
A method for modeling the propagation of discontinuous waves over a dry bed using the first approximation of shallow water
theory is proposed. The method is based on a modified conservation law of total momentum that takes into account the concentrated
momentum losses due to the formation of local turbulent vortex structures in the fluid surface layer at a discontinuous-wave
front. A quantitative estimate of these losses is obtained by deriving the shallow water equations from the Navier-Stokes
equations with allowance for viscosity, which has a rapidly increasing effect in the turbulent flow regions described by discontinuous
waves. The stability of the discontinuous waves admitted by the modified system of conservation laws of shallow water theory
is examined. As an example, a comparative analysis is performed of the solutions of the dam-break problem obtained for the
classical and modified shallow water models.
__________
Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 48, No. 6, pp. 22–43, November–December, 2007 相似文献
18.
Christopher E. Elmer Erik S. Van Vleck 《Journal of Dynamics and Differential Equations》2002,14(3):493-517
We consider a variant of Newton's method for solving nonlinear differential-difference equations arising from the traveling wave equations of a large class of nonlinear evolution equations. Building on the Fredholm theory recently developed by Mallet-Paret we prove convergence of the method. The utility of the method is demonstrated with a series of examples. 相似文献
19.