首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
This study used the carbon dots solution for the laser ablation technique to fabricate silver nanoparticles. The ablation time range was from 5 min to 20 min. Analytical methods, including Fourier transform infrared spectroscopy (FTIR), UV-visible spectroscopy, transmission electron microscopy, and Raman spectroscopy were used to categorize the prepared samples. The UV-visible and z-scan techniques provided optical parameters such as linear and nonlinear refractive indices in the range of 1.56759 to 1.81288 and 7.3769 × 10−10 cm2 W−1 to 9.5269 × 10−10 cm2 W−1 and the nonlinear susceptibility was measured in the range of 5.46 × 10−8 to 6.97 × 10−8 esu. The thermal effusivity of prepared samples, which were measured using the photoacoustic technique, were in the range of 0.0941 W s1/2 cm−2 K−1 to 0.8491 W s1/2 cm−2 K−1. The interaction of the prepared sample with fluoride was investigated using a Raman spectrometer. Consequently, the intensity of the Raman signal decreased with the increasing concentration of fluoride, and the detection limit is about 0.1 ppm.  相似文献   

2.
We used Raman micro-spectroscopy technique to analyze the molecular changes associated with oral squamous cell carcinoma (SCC) cells in the form of frozen tissue. Previously, Raman micro-spectroscopy technique on human tissue was mainly based on spectral analysis, but we worked on imaging of molecular structure. In this study, we evaluated the distribution of four components at the cell level (about 10 μm) to describe the changes in protein and molecular structures of protein belonging to malignant tissue. We analyzed ten oral SCC samples of five patients without special pretreatments of the use of formaldehyde. We obtained cell level images of the oral SCC cells at various components (peak at 935 cm−1: proline and valine, 1004 cm−1: phenylalanine, 1223 cm−1: nucleic acids, and 1650 cm−1: amide I). These mapping images of SCC cells showed the distribution of nucleic acids in the nuclear areas; meanwhile, proline and valine, phenylalanine, and amide I were detected in the cytoplasm areas of the SCC cells. Furthermore, the peak of amide I in the cancer area shifts to the higher wavenumber side, which indicates the α-helix component may decrease in its relative amounts of protein in the β-sheet or random coil conformation. Imaging of SCC cells with Raman micro-spectroscopy technique indicated that such a new observation of cancer cells is useful for analyzing the detailed distribution of various molecular conformation within SCC cells.  相似文献   

3.
In order to explore a rapid identification method for the anti-counterfeit of commercial high value collections, a three-step infrared spectrum method was used for the pterocarpus collection identification to confirm whether a commercial pterocarpus bracelet (PB) was made from the precious species of Pterocarpus santalinus (P. santalinus). In the first step, undertaken by Fourier transform infrared spectroscopy (FTIR) spectrum, the absorption peaks intensity of PB was slightly higher than that of P. santalinus only at 1594 cm−1, 1205 cm−1, 1155 cm−1 and 836 cm−1. In the next step of second derivative IR spectra (SDIR), the FTIR features of the tested samples were further amplified, and the peaks at 1600 cm−1, 1171 cm−1 and 1152 cm−1 become clearly defined in PB. Finally, by means of two-dimensional correlation infrared (2DIR) spectrum, it revealed that the response of holocellulose to thermal perturbation was stronger in P. santalinus than that in PB mainly at 977 cm−1, 1008 cm−1, 1100 cm−1, 1057 cm−1, 1190 cm−1 and 1214 cm−1, while the aromatic functional groups of PB were much more sensitive to the thermal perturbation than those of P. santalinus mainly at 1456 cm−1, 1467 cm−1, 1518 cm−1, 1558 cm−1, 1576 cm−1 and 1605 cm−1. In addition, fluorescence microscopy was used to verify the effectiveness of the above method for wood identification and the results showed good consistency. This study demonstrated that the three-step IR method could provide a rapid and effective way for the anti-counterfeit of pterocarpus collections.  相似文献   

4.
Comprehensive studies on semi-clathrate hydrates phase equilibria are still required to better understand characteristics of this type of clathrates. In this communication, new experimental data on the dissociation conditions of semi-clathrate hydrates of {carbon dioxide + tetra-n-butyl-ammonium bromide (TBAB)} aqueous solution are first reported in a wide range of TBAB concentrations and at different pressures and temperatures. A thermodynamic model is then proposed to predict the dissociation conditions of the semi-clathrate hydrates for the latter system. The (hydrate + TBAB) aqueous solution (H + Lw) phase equilibrium prediction is considered based on Gibbs free energy minimization approach. A modified van der Waals–Platteeuw solid solution theory developed based on the (H + Lw) equilibrium information is employed to predict the dissociation conditions of semi-clathrate hydrates of carbon dioxide + TBAB. The properties of the aqueous solution are estimated using the AMSA-NRTL electrolyte model (considering the association and hydration of ions). The Peng–Robinson equation of state is used for estimating the gas/vapour phase properties. Results show that the proposed model satisfactorily predicts the experimental values with an average absolute relative deviation of approximately 13%.  相似文献   

5.
The healing process in guinea pig skin following surgical incisions was evaluated at the molecular level, in vivo, by the use of Raman spectroscopy. After the incisions were closed either by suturing or by laser tissue welding (LTW), differences in the respective Raman spectra were identified. The study determined that the ratio of the Raman peaks of the amide III (1247 cm−1) band to a peak at 1326 cm−1 (the superposition of elastin and keratin bands) can be used to evaluate the progression of wound healing. Conformational changes in the amide I band (1633–1682 cm−1) and spectrum changes in the range of 1450–1520 cm−1 were observed in LTW and sutured skin. The stages of the healing process of the guinea pig skin following LTW and suturing were evaluated by Raman spectroscopy, using histopathology as the gold standard. LTW skin demonstrated better healing than sutured skin, exhibiting minimal hyperkeratosis, minimal collagen deposition, near-normal surface contour, and minimal loss of dermal appendages. A wavelet decomposition–reconstruction baseline correction algorithm was employed to remove the fluorescence wing from the Raman spectra.  相似文献   

6.
A combination of Fourier transform infrared spectroscopy in attenuated total reflectance geometry (FTIR-ATR) and 2D correlation analysis (2D-COS) was applied here for the first time in order to investigate the temperature-dependent dynamical evolution occurring in a particular type of inclusion complex, based on sulfobutylether-β-cyclodextrin (SBE-β-CD) as hosting agent and Coumestrol (7,12-dihydorxcoumestane, Coum), a poorly-soluble active compound known for its anti-viral and anti-oxidant activity. For this purpose, synchronous and asynchronous 2D spectra were calculated in three different wavenumber regions (960–1320 cm−1, 1580–1760 cm−1 and 2780–3750 cm−1) and over a temperature range between 250 K and 340 K. The resolution enhancement provided by the 2D-COS offers the possibility to extract the sequential order of events tracked by specific functional groups of the system, and allows, at the same time, the overcoming of some of the limits associated with conventional 1D FTIR-ATR analysis. Acquired information could be used, in principle, for the definition of an optimized procedure capable to provide high-performance T-sensitive drug carrier systems for different applications.  相似文献   

7.
Raman spectra of glacial acetic acid from 350 to 3700 cm–1 have been measured at temperatures up to 275°C and at a pressure of 9 MPa. Raman spectra of aqueous solutions of acetic acid from 3.9 to 16 molar have been measured up to 200°C at a pressure of 7 MPa. The spectral region 800 to 1850 cm–1 for both glacial acetic acid and its aqueous solutions have been studied in detail since this region is significantly affected by variations in temperature and concentration. An interpretation of the bands in this spectral region was made with the aid of factor analysis, difference spectroscopy, band resolution techniques and the existing extensive literature. The results suggest that the major equilibrium in glacial acetic acid is between cyclic and linear dimers; however, in aqueous solutions in the concentration range studied, mono- and di-hydrated dimers and cyclic dimers are the predominant species.  相似文献   

8.
Graphene Quantum dots (GQDs) are used as a surface-enhanced Raman substrate for detecting target molecules with large specific surface areas and more accessible edges to enhance the signal of target molecules. The electrochemical process is used to synthesize GQDs in the solution-based process from which the SERS signals were obtained from GQDs Raman spectra. In this work, GQDs were grown via the electrochemical process with citric acid and potassium chloride (KCl) electrolyte solution to obtain GQDs in a colloidal solution-based format. Then, GQDs were characterized by transmission electron microscope (TEM), Fourier-transform infrared spectroscopy (FTIR), and Raman spectroscopy, respectively. From the results, SERS signals had observed via GQDs spectra through the Raman spectra at D (1326 cm−1) and G (1584 cm−1), in which D intensity is defined as the presence of defects on GQDs and G is the sp2 orbital of carbon signal. The increasing concentration of KCl in the electrolyte solution for 0.15M to 0.60M demonstrated the increment of Raman intensity at the D peak of GQDs up to 100 over the D peak of graphite. This result reveals the potential feasibility of GQDs as SERS applications compared to graphite signals.  相似文献   

9.
Miscibility of blends of poly(2-cyano-1,4-phenyleneterephthalamide/polyvinylpyrrolidone) (CN-PPTA/PVP) was investigated by dilute solution viscometry, two-dimensional (2D) correlation Fourier transformed infrared (FTIR) spectroscopy and solid state 13C NMR spectroscopy. It was shown that a large proportion of the PVP, the water-soluble component, could not be removed from CN-PPTA by extraction with water, and even with boiling water for blend films, suggesting that the flexible aliphatic PVP chain forms a blend with the rigid aromatic CN-PPTA chain through strong intermolecular interaction making it too difficult to dissolve even in boiling water. Viscometry on a polymer mixture of dilute solution showed that [η]exp exhibited larger value than [η]theo in all mixtures used in this experiment, suggesting occurrence of a strong attractive interaction between the two polymers. 2D correlation FTIR spectroscopy revealed that the carbonyl absorption band of PVP at 1675 cm−1 shifted to a new low frequency absorption band at 1640 cm−1 with a change of 35 cm−1, suggesting strong hydrogen bonding with NH (amide II) proton of CN-PPTA. Another new absorption band at 1685 cm−1 was due to the carbonyl absorption band of CN-PPTA shifting to a higher frequency than that at 1662 cm−1, indicating that some of the carbonyl groups in the CN-PPTA components of the blends were in a free state or in a non-hydrogen bonded state as a consequence of the participation of NH proton of CN-PPTA in hydrogen bonding, resulting in the absorption bands of NH bend deformation of CN-PPTA at 1542 and 1313 cm−1 being shifted to higher wavenumber of 1556 and 1324 cm−1, respectively. Solid state 13C NMR spectroscopy revealed a chemical shift for CO of the PVP component in the blend fiber changing down-field (shift to left) at 177.346 ppm with a difference of 1.812 ppm; this was due to a lower electron density around the carbon atom of CO of lactam via hydrogen bonding with NH proton of amide in the CN-PPTA component, suggesting that a homogeneous blend of the CN-PPTA and PVP was produced on a molecular scale via hydrogen bonding.  相似文献   

10.
In this study, we investigate the crystal structures and phase equilibria of butanols+CH4+H2O systems to reveal the hydroxy group positioning and its effects on hydrate stability. Four clathrate hydrates formed by structural butanol isomers are identified with powder X‐ray diffraction (PXRD). In addition, Raman spectroscopy is used to analyze the guest distributions and inclusion behaviors of large alcohol molecules in these hydrate systems. The existence of a free OH indicates that guest molecules can be captured in the large cages of structure II hydrates without any hydrogen‐bonding interactions between the hydroxy group of the guests and the water‐host framework. However, Raman spectra of the binary (1‐butanol+CH4) hydrate do not show the free OH signal, indicating that there could be possible hydrogen‐bonding interactions between the guests and hosts. We also measure the four‐phase equilibrium conditions of the butanols+CH4+H2O systems.  相似文献   

11.
The resonance Raman spectra of tris(acetylacetonatoiron(III)) and ruthenium(III) complexes in various solvents and in water-acetonitrile (W-AN) mixtures were measured. The resonance Raman spectra of both complexes indicated peaks near 460 and around 1580 cm–1. Thev(C-O) peak (around 1580 cm–1) is shifted to low frequency with an increase in the dielectric constant T of the solvents, whereas thev(M-O) (M=Fe and Ru, near 460 cm–1) are constant, independent of T. It implies that the C-O bond in the acac ligand is lengthened by the polarizability effect of the solvents, while both the Fe-O and Ru-O bonds, which are located in the inside of the complexes, are not influenced by the solvents indicating that the interaction does not depend on the properties of individual solvent molecules but on those of the aggregate.  相似文献   

12.
Heat capacities of structure I and II trimethylene oxide (TMO) clathrate hydrates doped with small amount of potassium hydroxide (x=1.8×10–4 to water) were measured by an adiabatic calorimeter in the temperature range 11–300 K. In the str. I hydrate (TMO·7.67H2O), a glass transition and a higher order phase transition were observed at 60 K and 107.9 K, respectively. The glass transition was considered to be due to the freezing of the reorientation of the host water molecules, which occurred around 85 K in the pure sample and was lowered owing to the acceleration effect of KOH. The relaxation time of the water reorientation and its distribution were estimated and compared with those of other clathrate hydrates. The phase transition was due to the orientational ordering of the guest TMO molecules accommodated in the cages formed by water molecules. The transition was of the higher order and the transition entropy was 1.88 J·K–1(TMO-mol)–1, which indicated that at least 75% of orientational disorder was remaining in the low temperature phase. In the str. II hydrates (TMO·17H2O), only one first-order phase transition appeared at 34.5 K. This transition was considered to be related to the orientational ordering of the water molecules as in the case of the KOH-doped acetone and tetrahydrofuran (THF) hydrates. The transition entropy was 2.36 JK–1(H2O-mol)–1, which is similar to those observed in the acetone and THF hydrates. The relations of the transition temperature and entropy to the guest properties (size and dipole moment) were discussed.Contribution No 57 from the Microcalorimetry Research CenterThe authors would like to express their sincere thanks to the Nissan Science Foundation for their financial support.  相似文献   

13.
In the last decades, silk fibroin and wool keratin have been considered functional materials for biomedical applications. In this study, fabrics containing silk fibers from Bombyx mori and Tussah silk fibers from Antheraea pernyi, as well as wool keratin fabrics, were grafted with phosmer CL and phosmer M (commercial names, i.e., methacrylate monomers containing phosphate groups in the molecular side chain) with different weight gains. Both phosmers were recently proposed as flame retarding agents, and their chemical composition suggested a possible application in bone tissue engineering. IR and Raman spectroscopy were used to disclose the possible structural changes induced by grafting and identify the most reactive amino acids towards the phosmers. The same techniques were used to investigate the nucleation of a calcium phosphate phase on the surface of the samples (i.e., bioactivity) after ageing in simulated body fluid (SBF). The phosmers were found to polymerize onto the biopolymers efficiently, and tyrosine and serine underwent phosphorylation (monitored through the strengthening of the Raman band at 1600 cm−1 and the weakening of the Raman band at 1400 cm−1, respectively). In grafted wool keratin, cysteic acid and other oxidation products of disulphide bridges were detected together with sulphated residues. Only slight conformational changes were observed upon grafting, generally towards an enrichment in ordered domains, suggesting that the amorphous regions were more prone to react (and, sometimes, degrade). All samples were shown to be bioactive, with a weight gain of up to 8%. The most bioactive samples contained the highest phosmers amounts, i.e., the highest amounts of phosphate nucleating sites. The sulphate/sulphonate groups present in grafted wool samples appeared to increase bioactivity, as shown by the five-fold increase of the IR phosphate band at 1040 cm−1.  相似文献   

14.
A supramolecular network [H4bdcbpy(NO3)2·H2O] (H4bdcbpy = 1,1′-Bis(3,5-dicarboxybenzyl)-4,4′-bipyridinium) (1) was prepared by a zwitterionic viologen carboxylate ligand in hydrothermal synthesis conditions. The as-synthesized (1) has been well characterized by means of single-crystal/powder X-ray diffraction, elemental analysis, thermogravimetric analysis and infrared and UV-vis spectroscopy. This compound possesses a three-dimensional supramolecular structure, formed by the hydrogen bond and π–π interaction between the organic ligands. This compound shows photochromic properties under UV light, as well as vapochromic behavior upon exposure to volatile amines and ammonia, in which the electron transfer from electron-rich parts to the electron-deficient viologen unit gives rise to colored radicals. Moreover, the intensive intermolecular H-bonding networks in 1 endows it with a proton conductivity of 1.06 × 10−3 S cm−1 in water at 90 °C.  相似文献   

15.
We present a detailed study of Raman spectroscopy and photoluminescence measurements on Li‐doped ZnO nanocrystals with varying lithium concentrations. The samples were prepared starting from molecular precursors at low temperature. The Raman spectra revealed several sharp lines in the range of 100–200 cm?1, which are attributed to acoustical phonons. In the high‐energy range two peaks were observed at 735 cm?1 and 1090 cm?1. Excitation‐dependent Raman spectroscopy of the 1090 cm?1 mode revealed resonance enhancement at excitation energies around 2.2 eV. This energy coincides with an emission band in the photoluminescence spectra. The emission is attributed to the deep lithium acceptor and intrinsic point defects such as oxygen vacancies. Based on the combined Raman and PL results, we introduce a model of surface‐bound LiO2 defect sites, that is, the presence of Li+O2? superoxide. Accordingly, the observed Raman peaks at 735 cm?1 and 1090 cm?1 are assigned to Li? O and O? O vibrations of LiO2.  相似文献   

16.
The color stability of anthocyanins (ACN) has been shown to be improved by interaction with whey proteins (WP). In this study, we explore the ACN–WP interaction using Fourier transform infrared spectroscopy (IR). ACN from purple corn, grape, and black carrot (50 μM) were evaluated. IR spectra (4000–700 cm−1) were collected for native and preheated (40–80 °C) WP (5 mg/mL) and ACN–WP mixtures at pH 7.4. Soft independent modeling of class analogy was used to analyze the IR data. The WP secondary structure changed after heat treatments and after interaction with ACN. As expected, the WP α-helices decreased, and β-sheet increased after heat treatment. The intensities of the WP amide I and II bands decreased after ACN addition, revealing a decrease in the WP α-helix content. Higher preheating temperatures (70–80 °C) resulted in a more disordered WP structure that favored stronger WP–ACN interactions related to amide III changes. Addition of ACN stabilized WP structure due to heat denaturation, but different ACN structures had different binding affinities with WP. WP structure had less change after interaction with ACN with simpler structures. These results increase our understanding of ACN–WP interactions, providing a potential strategy to extend anthocyanin color stability by WP addition.  相似文献   

17.
The uranyl sulphate mineral zippeite was studied by Raman spectroscopy. The phase purity of the sample was initially checked by X-ray powder diffraction and its chemical composition was defined by electron microprobe (wavelength dispersive spectroscopy, WDS) analysis. The Raman spectroscopy research focused on the low wavenumber and uranyl stretching vibration regions. Vibration bands down to 50 cm–1 were tentatively assigned. The U–O bond lengths were calculated based on empirical relations. Inferred values are consistent with those obtained from the crystal structure analysis of synthetic zippeite. Number of bands was interpreted on the basis of factor group analysis.  相似文献   

18.
19.
A water-soluble cyclophane dimer having two disulfide groups as a reduction-responsive cleavable bond as well as several acidic and basic functional groups as a pH-responsive ionizable group 1 was successfully synthesized. It was found that 1 showed pH-dependent guest-binding behavior. That is, 1 strongly bound an anionic guest, 6-p-toluidinonaphthalene-2-sulfonate (TNS) with binding constant (K/M−1) for 1:1 host-guest complexes of 9.6 × 104 M−1 at pH 3.8, which was larger than those at pH 7.4 and 10.7 (6.0 × 104 and 2.4 × 104 M−1, respectively), indicating a favorable electrostatic interaction between anionic guest and net cationic 1. What is more, release of the entrapped guest molecules by 1 was easily controlled by pH stimulus. Large favorable enthalpies (ΔH) for formation of host-guest complexes were obtained under the pH conditions employed, suggesting that electrostatic interaction between anionic TNS and 1 was the most important driving force for host-guest complexation. Such contributions of ΔH for formation of host-guest complexes decreased along with increased pH values from acidic to basic solutions. Upon addition of dithiothreitol (DTT) as a reducing reagent to an aqueous PBS buffer (pH 7.4) containing 1 and TNS, the fluorescence intensity originating from the bound guest molecules decreased gradually. A treatment of 1 with DTT gave 2, having less guest-binding affinity by the cleavage of disulfide bonds of 1. Consequently, almost all entrapped guest molecules by 1 were released from the host. Moreover, such reduction-responsive cleavage of 1 and release of bound guest molecules was performed more rapidly in aqueous buffer at pH 10.7.  相似文献   

20.
Micro-Raman investigations of mixed gas hydrates   总被引:2,自引:0,他引:2  
We report laser Raman spectroscopic measurements on mixed hydrates (clathrates), with guest molecules tetrahydrofuran (THF) and methane (CH4), at ambient pressure and at temperatures from 175 to 280 K. Gas hydrates were synthesized with different concentrations of THF ranging from 5.88 to 1.46 mol%. In all cases THF molecules occupied the large cages of sII hydrate. The present studies demonstrate formation of sII clathrates with CH4 molecules occupying unfilled cages for concentrations of THF ranging from 5.88 to 2.95 mol%. The Raman spectral signature of hydrates with 1.46 mol% THF are distinctly different; hydrate growth was non-uniform and structural transformation occurred from sII to sI prior to clathrate melting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号