首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.

Recent progress in imidoselenium chemistry is reviewed. Selenium diimides are thermally unstable and decompose forming a number of cyclic selenium imide derivatives Se3(NR)2, Se3(NR)3, Se6(NR)2, Se9(NR)6, OSe(μ-NR)2SeO, RNSe(μ-NR)2SeO, and RNSe(μ-NR)2SO2 (R = t Bu or adamantyl). All species have been structurally characterized. The experimental and theoretical evidence for the possibility of [2 + 2] cyclodimerization of selenium diimides is discussed.  相似文献   

2.
Chloroselenates with Di- and Tetravalent Selenium: 77Se-NMR-Spectra, Syntheses, and Crystal Structures of (PPh4)2SeCl6 · 2 CH2Cl2, (NMe3Ph)2SeCl6, (K-18-crown-6)2SeCl6 · 2 CH3CN, PPh4Se2Cl9, (NEt4)2Se2Cl10, (PPh4)2Se3Cl8 · CH2Cl2, and (PPh4)2Se4Cl12 · CH2Cl2 The title compounds were obtained from reactions of selenium and selenium tetrachloride with PPh4Cl, NEt4Cl, NMe3PhCl, or (K-18-crown-6)Cl in dichloromethane or acetonitrile. (PPh4)2Se3Cl8 · CH2Cl2 was also formed from GeSe, PPh4Cl and chlorine in acetonitrile. The 77Se-NMR spectra of the solutions show the presence of dynamical equilibria which, depending on composition, mainly contain SeCl2, SeCl4, Se2Cl2, SeCl62–, Se2Cl62–, and/or Se2Cl102–. Solutions of AsCl3 and (PPh4)2Se4 in acetonitrile upon chlorination with Cl2 or PPh4AsCl6 yielded (PPh4)2Se2Cl6, while (PPh4)2As2Se4Cl12 was the product after chlorination with SOCl2. According to the X-ray crystal structure analyses the ions SeCl62–, Se2Cl9, and Se2Cl102– have the known structures with octahedral coordination of the Se atoms. The structure of the Se3Cl82– ion corresponds to that of Se3Br82– consisting of three SeCl2 molecules associated via two Cl ions. (PPh4)2Se4Cl12 · CH2Cl2 is isotypic with the corresponding bromoselenate and contains anions in which three SeCl2 molecules are attached to a SeCl62– ion; there is a peculiar Se–Se interaction.  相似文献   

3.
Abstract

Contrary to statements in the literature the PhP/Se system does contain a compound with a PhP/Se ratio lower than 1. The reaction of pentaphenyl-cyclopentaphosphane and elemental selenium yields depending on the molar ratio the heterocyclic compounds (PhP)4Se (1), (PhP)3Se3 (2), or (PhP)2Se4 (3). 1, 2, and 3 are yellow to orange-red crystalline stable compounds. Their molecular structures, as shown by the 31P- and 77Se-NMR data as well as by the X-ray crystal structure determination of 2, parallel those of the corresponding sulfur derivatives. Nucleophiles add easily to the phosphorus in 3 splitting the P2Se2-ring.  相似文献   

4.
Calculations of the isotropic indirect nuclear spin–spin coupling constants nJ(77Se,77Se) (n = 1,2,3) have been carried out at the B3LYP/6-311+G(d,p) level of theory. The compounds considered were non-cyclic and cyclic diselanes 1, boryl-substituted diselanes 2, dichlorodiselane 4, selenium Se8, Se6, Se5 and various mixed selenium sulfides 3, and the bis(ethylene)tetraselenafulvalene (TSeF) 5. In comparison with experiment, both magnitude and sign, if available, were reproduced. The Coupled Perturbed DFT method gave the total coupling constant and the contributions arising from the Fermi contact term (FC), the spin-dipole (SD) and the spin.orbital terms (PSO and DSO). FC contributions play a minor role in most cases when compared with the non-contact terms.SD and PSO.  相似文献   

5.
A series of stable imino(chalcogeno)phosphoranes R  P( X)  NAr, RPh, 2, 4, 6-Me3C6H2, 2, 4, 6-i-Pr3C6H2; Ar 2, 4, 6-t-Bu3C6H2; X  S, Se ( 5bd, 6b,c ), has been prepared by the oxidation of λ3-imino-phosphines R  P  N  Ar ( 4b-d ) with sulfur and selenium. When P  (tert-butyl)iminophosphine, t-Bu  P  N-  Ar ( 4a ), was reacted with S8 and Seiv the corresponding oligomeric metaphosphonimidates 7, 8 were obtained. All new compounds are characterized by their NMR spectra. The constitution of the imino(thioxo)phosphorane 5d is proved by X-ray crystal structure determination.  相似文献   

6.
Systematic studies on selenoborates containing a B12 cluster entity and alkali metal cations led to the new crystalline phase Na6[B18Se17] which consists of a icosahedral B12 cluster completely saturated with trigonal‐planar BSe3 units and sodium counter‐ions. Neighbouring cluster entities are connected in one direction via exocyclic selenium atoms forming the infinite chain anion ([B18Se16Se2/2]6–). The new chalcogenoborate was prepared in a solid state reaction from sodium selenide, amorphous boron and selenium in evacuated carbon coated silica tubes at a temperature of 850 °C. Na6[B18Se17] crystallizes in the monoclinic space group C2/c (no. 15) with a = 18.005(4) Å, b = 16.549(3) Å, c = 11.245(2) Å, β = 91.35(3)° and Z = 4.  相似文献   

7.
The fundamental vibrations of 13 cyclic SnSe8-n (n = 7—2) molecules have been calculated using a modified Urey—Bradley force field with 9–14 independent force constants whose values have been adapted from those of Se8 and S8. Calculated wavenumbers are compared to those obtained by Raman spectroscopy for sulfur—selenium phases prepared by recrystallizing quenched molten mixtures of the elements as previously described. Agreement between the observed spectra and calculated wavenumbers is closest by assuming the existence of selenium—selenium bonds and the absence of isolated selenium atoms in SnSe8-n molecules. It is assumed that sulfur—selenium phases are mixed crystals with the following components in varying concentrations: 1,2-S6Se2, 1,2,3-S5Se3, 1,2,3,4-S4Se4, 1,2,5,6-S4Se4, 1,2,3-S3Se5 and 1,2-S2Se6. The presence of S8 and Se8 in some of the phases is indicated by the Raman spectra.  相似文献   

8.
Systematic investigations of ternary barium selenoborates led to the new compounds BaB2Se6 and Ba2B4Se13 which represent the first alkaline earth perselenoborates. Appropriate amounts of barium selenide, boron and selenium were filled into carbon coated silica tubes which were sealed under vacuum. The high temperature reactions and subsequent annealing processes were performed in horizontal one‐zone furnaces. By means of single crystal X‐ray diffraction the structure of BaB2Se6 was determined to be orthorhombic, space group Cmca (no. 64) with a = 11.326(2)Å, b = 7.659(2)Å and c = 10.315(2)Å, while for Ba2B4Se13 the monoclinic space group P21/c (no. 14) was found with a = 12.790(3)Å, b = 11.560(2)Å, c = 12.862(3)Å and β = 103.22(3)°. BaB2Se6 exhibits infinite layers of [B2Se62—]‐anions oriented parallel to the a‐b‐plane. Each layer consists of B2Se2four‐membered rings, which are connected via four diselenide bridges. Thus, B6Se12‐rings are formed in which the barium cations are located. Likewise, in Ba2B4Se13 polymeric [B4Se134—]‐anions are running parallel to the a‐c‐plane resulting in a new layered structure type built of alternating B2Se4‐ and B2Se3‐rings which are connected by perseleno contacts.  相似文献   

9.
Novel Oxonium Halogenochalcogenates Stabilized by Crown Ethers: [H3O(Dibromo‐benzo‐18‐crown‐6)]2[Se3Br10] and [H5O2(Bis‐dibromo‐dibenzo‐24‐crown‐8]2[Se3Br8] Two novel complex oxonium bromoselenates(II,IV) and –(II) are reported containing [H3O]+ and [H5O2]+ cations coordinated by crown ether ligands. [H3O(dibromo‐benzo‐18‐crown‐6)]2[Se3Br10] ( 1 ) and [H5O2(bis‐dibromo‐dibenzo‐24‐crown‐8]2[Se3Br8] ( 2 ) were prepared as dark red crystals from dichloromethane or acetonitrile solutions of selenium tetrabromide, the corresponding unsubstituted crown ethers, and aqueous hydrogen bromide. The products were characterized by their crystal structures and by vibrational spectra. 1 is triclinic, space group (Nr. 2) with a = 8.609(2) Å, b = 13.391(3) Å, c = 13.928(3) Å, α = 64.60(2)°, β = 76.18(2)°, γ = 87.78(2)°, V = 1404.7(5) Å3, Z = 1. 2 is also triclinic, space group with a = 10.499(2) Å, b = 13.033(3) Å, c = 14.756(3) Å, α = 113.77(3)°, β = 98.17(3)°, γ = 93.55(3)°. V = 1813.2(7) Å3, Z = 1. In the reaction mixture complex redox reactions take place, resulting in (partial) reduction of selenium and bromination of the crown ether molecules. In 1 the centrosymmetric trinuclear [Se3Br10]2? consists of a central SeIVBr6 octahedron sharing trans edges with two square planar SeIIBr4 groups. The novel [Se3Br8]2? in 2 is composed of three planar trans‐edge sharing SeIIBr4 squares in a linear arrangement. The internal structure of the oxonium‐crown ether complexes is largely determined by the steric restrictions imposed by the aromatic rings in the crown ether molecules, as compared to complexes with more flexible unsubstituted crown ether ligands.  相似文献   

10.
Reactions of potassium perfluoro-t-butoxide with acyl fluorides lead to the corresponding perfluoro-t-butyl esters in high yield. The compounds [(CF3)3CO]2CO, (CF3)3COC(O)F, CF3C(O)OC(CF3)3, CH3C(O)OC(CF3)3 and CF3OOC(O)OC(CF3)3 have been thus obtained and some physical and chemical properties of each are reported.  相似文献   

11.
The reaction of potassium pentafluorophenoxide with acid fluorides has been investigated and found to yield pentafluorophenyl esters. The compounds CH3C(O)OC6F5, CF3C(O)OC6F5, CF(O)OC6F5, CF3OOC(O)OC6F5, and (C6F5O)2CO have been prepared. Physical and spectral data for each compound are reported.  相似文献   

12.
Synthesis and Properties of Tetrakis(Perfluoroalkyl)Tellurium Te(Rf)4 (Rf = CF3, C2F5, C3F7, C4F9) Te(CF3)4 is obtained from the reaction of Te(CF3)Cl2 with Cd(CF3)2 complexes as a complex with e. g. CH3CN, DMF. It is a light and temperature sensitive hydrolysable liquid. The reaction with fluorides yields the complex anion [Te(CF3)4F], with fluoride ion acceptors the complex cation [Te(CF3)3]+. With traces of water an acidic solution is formed. Te(CF3)4 acts as a trifluoromethylation reagent. The reaction with XeF2 gives hints for the formation of Ye(CF3)4F2. Properties and NMR spectra are discussed. The much more stable complexes of Te(Rf)4 (Rf = C2F5, C3F7, C4F9) are formed from the reaction of TeCl4 with the corresponding Cd(Rf)2 complexes.  相似文献   

13.
The homoleptic, square‐planar organoplatinum(II) compound [NBu4]2[Pt(CF3)4] ( 1 ) undergoes oxidative addition of CF3I under mild conditions to give rise to the octahedral organoplatinum(IV) complex [NBu4]2[Pt(CF3)5I] ( 2 ). This highly trifluoromethylated species reacts with Ag+ salts of weakly coordinating anions in Me2CO under a wet‐air stream to afford the aquo derivative [NBu4][Pt(CF3)5(OH2)] ( 4 ) in around 75 % yield. When the reaction of 2 with the same Ag+ salts is carried out in MeCN, the solvento compound [NBu4][Pt(CF3)5(NCMe)] ( 5 ) is obtained in around 80 % yield. The aquo ligand in 4 as well as the MeCN ligand in 5 are labile and can be cleanly replaced by neutral and anionic ligands to furnish a series of pentakis(trifluoromethyl)platinate(IV) compounds with formulae [NBu4][Pt(CF3)5(L)] (L=CO ( 6 ), pyridine (py; 7 ), tetrahydrothiophene (tht; 8 )) and [NBu4]2[Pt(CF3)5X] (X=Cl ( 9 ), Br ( 10 )). The unusual carbonyl–platinum(IV) derivative [NBu4][Pt(CF3)5(CO)] ( 6 ) is thermally stable and has a νCO of 2194 cm?1. The crystal structures of 2? CH2Cl2, 5 , [PPh4][Pt(CF3)5(CO)] ( 6′ ), and 7 have been established by X‐ray diffraction methods. Compound 2 has shown itself to be a convenient entry to the chemistry of highly trifluoromethylated platinum compounds. To the best of our knowledge, compounds 2 and 4 – 10 are the organoelement compounds with the highest CF3 content to have been isolated and adequately characterized to date.  相似文献   

14.
Selenium Polycations Stabilized by Polymeric Chlorobismuthate Anions: Syntheses and Crystal Structures of Se4[Bi4Cl14] and Se10[Bi5Cl17] Reactions of selenium with selenium(IV) chloride and bismuth(III) chloride in sealed evacuated glass ampoules at temperatures between 110 and 155 °C yield a series of compounds which are composed of discrete selenium polycations and polymeric chlorobismutate anions. Besides the already known Se8[Bi4Cl14] two new compounds have been identified by crystal structure analyses as Se4[Bi4Cl14] (tetragonal, P4/n, a = 1089.1(2) pm, c = 993.7(2) pm, Z = 2) and Se10[Bi5Cl17] (monoclinic, P21/c, a = 1079.24(8) pm, b = 2062.9(2) pm, c = 1676.1(2) pm, β = 90.87(1)°, Z = 4). Se4[Bi4Cl14] was obtained as red transparent platelike crystals and is the first example of a compound with (chalcogen4)2+ ions of exact square‐planar symmetry and molecular point group D4h in the solid state. The cations are surrounded by layers of two‐dimensional polymeric anions [Bi4Cl14]2–. Se10[Bi5Cl17] forms dark grey crystals with a reddish luster. The structure contains the known bicyclic polycation Se102+ which is disordered over two positions and the first three‐dimensional polymeric chlorobismutate anion [Bi5Cl17]2–. The different BiClx polyhedra are linked by sharing common vertices, edges, and faces.  相似文献   

15.
Bicyclic Iodo-tetrachalcogena-triphospha-heptanes The compounds P3Se4–nSnI (n = 0, 1, 2) have been identified by 31P nmr spectroscopy. They were prepared by a direct thermal reaction of red phosphorus, sulfur, selenium and iodine in the stoichiometric ratio. These iodides could be converted into corresponding bromides and chlorides by substitution reactions. All molecules show a diselenium bridge in which, in contrast to the other selenium positions, selenium could not be replaced by sulfur. Similar effects were observed for the diselenium bridges of P2Se5. Systematic changes of the chemical shifts and coupling constants are caused by alterations in the molecular geometry, either by replacement of selenium by sulfur, or of iodine by more electronegative ligands. An intramolecular exchange reaction is observed for all molecules.  相似文献   

16.
On Sesquiselenides of the Lanthanoids: Single Crystals of C‐type Ce2Se3, U‐type Gd2Se3, and Z‐type Lu2Se3 Single crystals of lanthanoid sesquiselenides (M2Se3; here: M = Ce, Gd, Lu) are accessible through conversion of the elements (lanthanoid and selenium) in molar ratios of 2:3 within seven days at 850 °C from evacuated silica ampoules if equimolar amounts of NaCl serve as a flux. In the case of Ce2Se3 (a = 897.74(6) pm) und Gd2Se3 (a = 872.56(5) pm) the cubic C‐type (I4¯3d, Z = 5.333) forms as dark red beads, whereas the orthorhombic Z‐type (Fddd, Z = 16) emerges for Lu2Se3 (a = 1125.1(1), b = 798.06(8), c = 2387.7(2) pm) as orange‐yellow bricks. Upon oxidation of monochloride hydrides (MClHx or AyMClHx; M = Ce, Gd, Lu; x = 1; A = Li, Na; y = 0.5) with selenium in arc‐welded tantalum ampoules the same main products appear with C‐Ce2Se3 and Z‐Lu2Se3, even with a surplus of NaCl or LiCl as fluxing agent. In the case of Gd2Se3, however, black‐red needles of the orthorhombic U‐type (Pnma, Z = 4; a = 1118.2(1), b = 403.48(4); c = 1097.1(1) pm) are yielded instead of C‐Gd2Se3. C‐Ce2Se3 crystallizes in a cation‐deficient Th3P4‐type structure (Ce2S3 type) according to Ce2.6670.333Se4 (Z = 4) or with Z = 5.333 for the empirical formula Ce2Se3. Here, Ce3+ is coordinated by eight Se2— anions trigon‐dodecahedrally. In U‐Gd2Se3 (U2S3 type) two crystallographically independent Gd3+ cations with coordination numbers of 7 (Gd1) and 7+1 (Gd2), respectively, are present, exhibiting mono‐ or bicapped trigonal prisms as coordination polyhedra. The crystal structure of Z‐Lu2Se3 (Sc2S3 type) shows two different Lu3+ cations as well, which now both reside in octahedral coordination of six Se2— anions each.  相似文献   

17.
Brown crystals of [PPh4]2[Se2Br6] ( 1 ) and [PEtPh3]2[Se2Br6] ( 2 ) were obtained when selenium and bromine reacted in acetonitrile solution in the presence of tetraphenylphosphonium bromide and ethyltriphenylphosphonium bromide, respectively. The crystal structure of 2 has been determined by X‐ray methods and refined to R = 0.0420 for 4161 reflections. The crystals are monoclinic, space group P21/n with Z = 2 and a = 13.055(3) Å, b = 12.628(3) Å, c = 13.530(3) Å, β = 92.40(3)° (293(2) K). In the solid state structure of 2 the dinuclear hexabromo‐diselenate(II) anion is centrosymmetric and consists of two distorted almost square‐planar SeBr4 units sharing a common edge through two bridging Br atoms. The terminal SeII–Br bond distances are found to be 2.419(1) and 2.445(1) Å, the bridging μBr–SeII bond distances 2.901(1) and 2.802(1) Å.  相似文献   

18.
PdCl2Se6 and PdBr2Se6, New Chalcogenrich Complexes of Palladium(II) Halides with Se6 Groups as Ligands PdCl2Se6 und PdBr2Se6, chalcogenrich complexes of palladium halides with Se6 groups as ligands have been prepared by reactions of Pd metal with melts of selenium and SeX4 (X = Cl, Br) at 180°C in closed silica ampoules. The new compounds have been characterized by vibrational spectra and thermal analysis. The X-ray analysis of PdCl2Se6 showed a polymeric structure, built up by chains of linear PdX2 groups connected by Se6 groups in a chair conformation.  相似文献   

19.
The Red crystals of [PPh4]2[Se2Br6(Se2Br2)2] ( 1 ) were obtained when selenium and bromine reacted in the solution of acetonitrile in the presence of tetraphenylphosphonium bromide. The crystal structure of 1 has been determined by X‐ray diffraction and refined to R = 0.0201 for 4024 reflections. The crystals are triclinic, space group with Z = 2 and a = 11.2757(4) Å, b = 12.3347(5) Å, c = 12.4948(5) Å, α = 113.152(4)°, β = 114.745(4)°, γ = 91.208(3)° (120(2) K). In the solid state the anion of 1 is built up of the Se2Br6 core and two Se2Br2 molecules each of which is linked to one of the trans‐positioned terminal Brt atoms of the Se2Br6 core. The central Se2Br6 part consists of a nearly planar arrangement of two planar SeBr4 units sharing a common edge through two μ2‐bridging Br atoms. The contact between the Brt and the SeI atom of the Se2Br2 molecule is 3.0872(5) Å and can be interpreted as a bond of the donor‐acceptor type with the Brt as donor and the Se2Br2 molecule as acceptor. The terminal SeII–Br and μ2Br–SeII bond lengths are 2.3654(4), 2.6699(5) Å and 2.5482(5), 3.0265(5) Å, respectively. The bond lengths in the coordinated Se2Br2 molecule are: SeI–SeI = 2.2686(5) Å, SeI–Br = 2.3779(5) and 2.3810(5) Å.  相似文献   

20.
Two new quaternary strontium selenium(IV) and tellurium(IV) oxychlorides, namely, Sr3(SeO3)(Se2O5)Cl2 and Sr4(Te3O8)Cl4, have been prepared by solid-state reaction. Sr3(SeO3)(Se2O5)Cl2 features a three-dimensional (3D) network structure constructed from strontium(II) interconnected by Cl, SeO32− as well as Se2O52− anions. The structure of Sr4(Te3O8)Cl4 features a 3D network in which the strontium tellurium oxide slabs are interconnected by bridging Cl anions. The diffuse reflectance spectrum measurements and results of the electronic band structure calculations indicate that both compounds are wide band-gap semiconductors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号