首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The neutral form of the unnatural amino acid phenylglycine was vaporized by laser ablation, and the presence of two conformers was detected in a supersonic expansion by Fourier transform microwave spectroscopy. Both conformers were unequivocally identified by comparison of their experimental rotational and quadrupole coupling constants with those calculated ab initio. The most stable conformer is stabilized by intramolecular hydrogen bonds N-H...O=C, N-H...pi (with the closest C-C bond in the aromatic ring), and a cis-COOH interaction. The other conformer exhibits a O-H...N hydrogen bond between the hydrogen atom of the hydroxyl group and the lone pair at the nitrogen atom.  相似文献   

2.
The alpha-amino acids 4(S)-hydroxyproline and 4(R)-hydroxyproline have been studied under isolation conditions in gas phase using laser-ablation molecular-beam Fourier transform microwave spectroscopy. Two conformers of each molecule have been detected in the jet-cooled rotational spectrum. The most stable conformer in both molecules exhibits an intramolecular N...H-O hydrogen bond (configuration 1) between the hydrogen atom of the carboxylic group and the nitrogen atom. The second conformer is characterized by an intramolecular N-H...O=C hydrogen bond (configuration 2). The conformers of 4(R)-hydroxyproline adopt a C(gamma)-exo puckering, while those of 4(S)-hydroxyproline present a C(gamma)-endo ring conformation. These ring conformations, which show the same propensity observed in collagen-like peptides, are stabilized by additional intramolecular hydrogen bonds involving the 4-hydroxyl group, with the exception of the most stable form of 4(S)-hydroxyproline for which a n-pi interaction between the oxygen atom of the 4-hydroxyl group and the carboxyl group carbon seems to be established. A gauche effect could be also contributing to stabilize the observed conformers.  相似文献   

3.
The reaction between the nitrile complex trans-[PtCl(4)(EtCN)(2)] and benzohydroxamic acids RC(6)H(4)C([double bond]O)NHOH (R = p-MeO, p-Me, H, p-Cl, o-HO) proceeds smoothly in CH(2)Cl(2) at approximately 45 degrees C for 2-3 h (sealed tube) or under focused 300 W microwave irradiation for approximately 15 min at 50 degrees C giving, after workup, good yields of the imino complexes [PtCl(4)[NH[double bond]C(Et)ON[double bond]C(OH)(C(6)H(4)R)](2)] which derived from a novel metalla-Pinner reaction. The complexes [PtCl(4)[NH[double bond]C(Et)ON[double bond]C(OH)(C(6)H(4)R)](2)] were characterized by elemental analyses (C, H, N), FAB mass spectrometry, and IR and (1)H and (13)C[(1)H] spectroscopies, and [PtCl(4)[NH[double bond]C(Et)ON[double bond]C(OH)(Ph)](2)] (as the bis-dimethyl sulfoxide solvate), by X-ray single-crystal diffraction. The latter disclosed its overall trans-configuration with the iminoacyl species in the hydroximic tautomeric form in E-configuration which is held by N[bond]H...N hydrogen bond between the imine [double bond]NH atom and the hydroximic N atom.  相似文献   

4.
Three conformers of the neutral amino acid N,N-dimethylglycine [(CH3)2NCH2COOH] were detected in a supersonic expansion by a combination of laser ablation (LA) and molecular-beam Fourier transform microwave (MB-FTMW) spectroscopy. A bifurcated methyl-to-carbonyl (C--HO==C) weak intramolecular hydrogen bond might stabilise the most stable conformer of C(s) symmetry. The second most stable conformer of C1 symmetry has a hydrogen bond between the hydroxyl group and the lone pair at the nitrogen atom (NH--O). The r(s) and r0 structures were derived for this conformer from the rotational data for the parent and six minor 13C, 15N and OD isotopomers. A third conformer exhibits a cis-carboxyl functional group and C1 symmetry. Ab initio MP2/6-311++G(d,p) predictions of the spectroscopic parameters were useful in analysing the spectra. In particular, the agreement of the nuclear quadrupole coupling constants with those calculated was conclusive in identifying the different conformers.  相似文献   

5.
A laser-ablation molecular-beam Fourier transform microwave (LA-MB-FTMW) spectrometer has been successfully applied to the structural study of alpha-aminobutyric acid. Three neutral conformers have been identified in the gas phase by comparing their experimental rotational and 14N nuclear quadrupole coupling parameters with those predicted by ab initio calculations at the MP2/6-311++G(d,p) level. The most stable conformer is stabilized by a bifurcated amine-to-carbonyl hydrogen bond (N--HO=C) and a cis-COOH group, and the side-chain adopts a configuration with a torsion angle tau(C(gamma)-C(beta)-C(alpha)-C') of about 180 degrees. The second most stable conformer exhibits the same configuration for the amino acid skeleton but adopts a different orientation for the side chain with tau(C(gamma)-C(beta)-C(alpha)-C') approximately -60 degrees. In the third conformer an intramolecular hydrogen bond is established between the hydroxyl group and the nitrogen atom (NH--O), with a side-chain orientation similar to that of the most stable conformer.  相似文献   

6.
Treatment of trans-[PtCl(4)(RCN)(2)] (R = Me, Et) with ethanol allowed the isolation of trans-[PtCl(4)[E-NH[double bond]C(R)OEt](2)]. The latter were reduced selectively, by the ylide Ph(3)P[double bond]CHCO(2)Me, to trans-[PtCl(2)[E-NH[double bond]C(R)OEt](2)]. The complexed imino esters NH[double bond]C(R)OEt were liberated from the platinum(II) complexes by reaction with 2 equiv of 1,2-bis(diphenylphosphino)ethane (dppe) in chloroform; the cationic complex [Pt(dppe)(2)]Cl(2) precipitates almost quantitatively from the reaction mixture and can be easily separated by filtration to give a solution of NH[double bond]C(R)OEt with a known concentration of the imino ester. The imino esters efficiently couple with the coordinated nitriles in trans-[PtCl(4)(EtCN)(2)] to give, as the dominant product, [PtCl(4)[NH[double bond]C(Et)N[double bond]C(R)OEt](2)] containing a previously unknown linkage, i.e., ligated N-(1-imino-propyl)-alkylimidic acid ethyl esters. In addition to [PtCl(4)[NH[double bond]C(Et)N[double bond]C(Et)OEt](2)], another compound was generated as the minor product, i.e., [PtCl(4)(EtCN)[NH[double bond]C(Et)N[double bond]C(Et)OEt]], which was reduced to [PtCl(2)(EtCN)[NH[double bond]C(Et)N[double bond]C(Et)OEt]], and this complex was characterized by X-ray single-crystal diffraction. The platinum(IV) complexes [PtCl(4)[NH[double bond]C(Et)N[double bond]C(R)OEt](2)] are unstable toward hydrolysis and give EtOH and the acylamidine complexes trans-[PtCl(4)[Z-NH[double bond]C(Et)NHC(R)[double bond]O](2)], where the coordination to the Pt center results in the predominant stabilization of the imino tautomer NH[double bond]C(Et)NHC(R)[double bond]O over the other form, i.e., NH(2)C(Et)[double bond]NC(R)[double bond]O, which is the major one for free acylamidines. The structures of trans-[PtCl(4)[Z-NH[double bond]C(Et)NHC(R)[double bond]O](2)] (R = Me, Et) were determined by X-ray studies. The complexes [PtCl(4)[NH[double bond]C(Et)N[double bond]C(R)OEt](2)] were reduced to the appropriate platinum(II) compounds [PtCl(2)[NH[double bond]C(Et)N[double bond]C(R)OEt](2)], which, similarly to the appropriate Pt(IV) compounds, rapidly hydrolyze to yield the acylamidine complexes [PtCl(2)[NH[double bond]C(Et)NHC(R)[double bond]O](2)] and EtOH. The latter acylamidine compounds were also prepared by an alternative route upon reduction of the corresponding platinum(IV) complexes. Besides the first observation of the platinum(IV)-mediated nitrile-imine ester integration, this work demonstrates that the application of metal complexes gives new opportunities for the generation of a great variety of imines (sometimes unreachable in pure organic chemistry) in metal-mediated conversions of organonitriles, the "storage" of imino species in the complexed form, and their synthetic utilization after liberation.  相似文献   

7.
Electron impact mass spectrometry of a range of amidines (R′NC(R)NHR′) including formamidines, acetamidines, benzamidines and tert-butylamidine, has been undertaken, and comparisons made of the fragmentation pathways followed by the different families of compounds. Fragmentation of all the molecular ions is characterized by skeletal carbon-nitrogen bond cleavage to form [R′NCR]+ and [R′NH]+ fragments, both of which are observed. For formamidines (R?H), the positive charge remains with the [R′NH]+ fragment which leads to the base peak at m/z93 corresponding to [R′NH2]+˙. In contrast, for acetamidines and benzamidines the charge prefers to remain with the [R′NCR]+ fragment which gives the base peak for these compounds. The spectra of unsubstituted amidines (HNC(R)NH2) are characterized by cleavage of the carbon substituent from the NCN skeleton, [CN2H3]+ (m/z 43) being produced in all cases.  相似文献   

8.
This work describes the use of conformer‐selective laser spectroscopy following supersonic expansion to probe the local folding proclivities of four‐membered ring cyclic β‐amino acid building blocks. Emphasis is placed on stereochemical effects as well as on the structural changes induced by the replacement of a carbon atom of the cycle by a nitrogen atom. The amide A IR spectra are obtained and interpreted with the help of quantum chemistry structure calculations. Results provide evidence that the building block with a trans‐substituted cyclobutane ring has a predilection to form strong C8 hydrogen bonds. Nitrogen‐atom substitution in the ring induces the formation of the hydrazino turn, with a related but distinct hydrogen‐bonding network: the structure is best viewed as a bifurcated C8/C5 bond with the N heteroatom lone electron pair playing a significant acceptor role, which supports recent observations on the hydrazino turn structure in solution. Surprisingly, this study shows that the cis‐substituted cyclobutane ring derivative also gives rise predominantly to a C8 hydrogen bond, although weaker than in the two former cases, a feature that is not often encountered for this building block.  相似文献   

9.
1H, 13C and 15N NMR spectra of eight 2-amino-N'-(aryl)-benzamidines and of the parent compound were recorded, and unequivocal chemical shift assignments through the use of COSY, 1H-J resolved, HETCOR and COLOC sequences were performed. 1H and 13C chemical shifts for the nuclei of the benzamidine aromatic ring were not affected by the substituents present at N'-phenyl group, while the substituent effects in the chemical shifts of the same nuclei of N'-phenyl ring were very similar to the ones reported for the corresponding monosubstituted benzenes, indicating that there is no interaction between the two aromatic rings. 15N NMR spectra (DEPT sequence) show just two hydrogenated nitrogen atoms, which confirm that the amino form is the most stable tautomer, but the observation of a sharp signal and two broad signals (15N decoupled spectra), and the corresponding broad signal for the =C-NH(2) protons (in the 1H spectra), indicates the occurrence of tautomerism between the amino and imino forms, observable for some of the studied benzamidines. Theoretical calculations lead to the conclusion that these compounds occur mostly as the amino tautomer with Z configuration, which is stabilized by hydrogen bonding.  相似文献   

10.
The molecular structure and intramolecular hydrogen bond energy of 18 conformers of 3‐imino‐propenyl‐amine were investigated at MP2 and B3LYP levels of theory using the standard 6‐311++G** basis set. The atom in molecules or AIM theory of Bader, which is based on the topological properties of the electron density (ρ), was used additionally and the natural bond orbital (NBO) analysis was also carried out. Furthermore calculations for all possible conformations of 3‐imino‐propenyl‐amin in water solution were also carried out at B3LYP/6‐311++G** and MP2/6‐311++G** levels of theory. The calculated geometrical parameters and conformational analyses in gas phase and water solution show that the imine–amine conformers of this compound are more stable than the other conformers. B3LYP method predicts the IMA‐1 as global minimum. This stability is mainly due to the formation of a strong N? H···N intramolecular hydrogen bond, which is assisted by π‐electrons resonance, and this π‐electrons are established by NH2 functional group. Hydrogen bond energies for all conformers of 3‐imino‐propenyl‐amine were obtained from the related rotamers methods. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2010  相似文献   

11.
The microwave spectra of (methylenecyclopropyl)methanol (H(2)C=C(3)H(3)CH(2)OH) and one deuterated species (H(2)C=C(3)H(3)CH(2)OD) have been investigated in the 20-80 GHz spectral range. Accurate spectral measurements have been performed in the 40-80 GHz spectral interval. The spectra of two rotameric forms, denoted conformer I and conformer IX, have been assigned. Both these rotamers are stabilized by intramolecular hydrogen bonds formed between the hydrogen atom of the hydroxyl group and the pseudo-pi electrons on the outside of the cyclopropyl ring, the so-called "banana bonds". The carbon-carbon bond lengths in the ring are rather different. The bonds adjacent to the methylene group (H(2)C=) are approximately 7 pm shorter that the carbon-carbon bond opposite to this group. It is found from relative intensity measurements of microwave transitions that conformer IX, in which the hydrogen bond is formed with the banana bonds of the long carbon-carbon bond, is 0.4(3) kJ/mol more stable than conformer I, where the hydrogen bond is formed with the pseudo-pi electrons belonging to the shortest carbon-carbon bond of the ring. The microwave study has been augmented by quantum chemical calculations at the MP2/6-311++G, G3 and B3LYP/6-311++G levels of theory.  相似文献   

12.
The characteristics of the intramolecular hydrogen bond (IMHB) for a series of 40 different enols of beta-diketones and their nitrogen counterparts have been systematically analyzed at the B3LYP/6-311+G(3df,2p)//B3LYP/6-311+G(d,p) level of theory. In some cases, two tautomers may exist which are interconnected by a hydrogen shift through the IMHB. In tautomer a the HB donor group (YH) is attached to the six-membered ring, while in tautomer b the HB acceptor (X) is the one that is attached to the six-membered ring. We found that changing an O to a N favors the a tautomer when the atom is endo and the contrary when it is exo, while the presence of a double bond favors the a tautomers. As expected, the OH group behaves as a better HB donor than the NH2 group and the C=NH group as a better HB acceptor than the C=O group, although the first effect clearly dominates. Accordingly, the expected IMHB strength follows the [donor, acceptor] trend: [OH, C=NH] > [OH, C=O] > [NH2, C=NH] > [NH2, C=O]. For all those compounds in which the functionality exhibiting the IMHB is unsaturated (I-type), the IMHB is much stronger than in their saturated counterparts (II-type). However, when the systems of the II-type subset, which are saturated, are constrained to have the HB donor and the HB acceptor lying in the same plane and at the same distance as in the corresponding unsaturated analogue, the IMHB is of similar or even larger strength. Hence, we conclude that, at least for this series of unsaturated compounds, the resonance-assisted hydrogen bond effect is not the primary reason behind the strength of their IMHBs, which is simply a consequence of the structure of the sigma-skeleton of the system that keeps the HB donor and the HB acceptor coplanar and closer to each other.  相似文献   

13.
The conformations and properties of cavitand 5 with four benzimidazole flaps are studied by (1)H NMR. The benzimidazole cavitand 5 can form very stable vase structures with an enforced concave cavity by intermolecular hydrogen bonding with four hydroxyl-containing molecules, X-OH, such as methanol (X = Me), acetic acid (X = CH(3)CO), and trifluoroacetic acid (X = CF(3)CO). The stronger hydrogen bond donor strengths of X-OH are, the stronger hydrogen bonds are formed between the NH and N atoms of the neighboring benzimidazole fragments and the more vase structures of 5.4HOX are stable. The annular tautomerism of 5 in CDCl(3)/CD(3)OD (9:1, v/v) due to the proton exchange between NH and N atoms of the neighboring benzimidazole fragments is observed by 400 MHz (1)H NMR, and the free energy of activation is measured as DeltaG++(210) = 10.2 kcal/mol at a coalescence temperature of 210 K. Cavitand 5 forms inclusion complexes with 4-methylbezamide guests such as 4-methyl-N-p-tolylbenzamide 6 and N,4-dimethylbenzamide 7 in water-saturated CDCl(3). However, an isomorphic 4-methylanilide guest such as N-4-tolylacetamide 8 cannot be recognized in the concave cavity of 5. This high selectivity toward 4-methylbenzamide over 4-methylanilide seems attributable to the hydrogen-binding interaction between the NH proton of 4-methylbezamide guest 7 and the oxygen atom of the closest water molecule.  相似文献   

14.
采用量子化学中的从头计算方法, 在MP2/6-31G(d,p)水平上研究了不饱和硼烯CH3NH=B:的结构及重排反应机理。结果表明, CH3NH=B:的单线态结构比三线态结构稳定, 该分子的基态是单线态。分子CH3NH=B:可以发生3种不同的重排反应。本文找到了这3种重排反应的过渡态, 并详细计算了不饱和硼烯CH3NH=B:重排反应的动力学函数, 据此讨论了不饱和硼烯CH3NH=B:的稳定性问题。  相似文献   

15.
The energies, vibrational frequencies and IR intensities of cis- and trans-N-acetyl-L-alanine (NAAL) are computed using the density functional theory (B3LYP) combined with the 6-311G(d, p) basis set. The trans conformer is characterized by an intramolecular NH ... O hydrogen bond leading to the formation of a five-membered ring and is by 23 kJ mol(-1) more stable than the cis conformer. The difference between the vibrational frequencies and IR intensities computed for the two conformers is discussed. The IR spectra at different temperatures and the Raman spectra of solid NAAL and its deuterated counterpart are investigated and discussed. The frequencies of the v(OH) vibration and the isotopic ratio suggest the formation of short OH ... O hydrogen bonds in the solid state. The NH group seems also to be involved in a weak hydrogen bond.  相似文献   

16.
吴琼洁  刘世雄 《结构化学》2004,23(10):1177-1182
本文合成了含水杨醛缩对硝基苯甲酰腙(简写为H2L)的钒酰配合物VOL(CH3OH)(CH3O)(1,C16H16N3O7V,Mr=413.26)和钴配合物[CoL(C5H5N)3]NO3C5H5N(2,C34H29N8O7Co,Mr=720.58)。配合物1属单斜晶系,空间群为P21/c,a=7.3253(3),b=18.8237(9),c=12.9014(5)?b=91.672(1),V=1778.2(1)3,Z=4,F(000)=848,m(MoKa)=0.603mm1,R=0.0470,wR=0.1312。配合物2属单斜晶系,空间群为P21/c,a=11.4196(8),b=17.157(1),c=17.081(1)?b=96.8233(9),V=3323.0(4)3,Z=4,F(000)=1488,m(MoKa)=0.578mm1,R=0.0455,wR=0.1311。在配合物1中,钒(V)原子由周围的酰氧基原子、配体L2的3个配位原子,去质子化甲醇的甲氧基原子和配位甲醇的氧原子配位,形成畸变的VO(ONO)(O)(O)八面体配位构型。晶体内每2个分子间通过氢键作用缔合成中心对称的分子对,OH…N氢键键长为2.861(4)?键角163.20。晶体中存在着弱p-p共轭作用。在配合物2中,钴(Ⅲ)原子由1个L2的3个配位原子和3个配位吡啶分子的3个氮原子配位,呈N4O2八面体配位构型。  相似文献   

17.
The kinetically unstable compound 3-mercapto-2-propenenitrile (HS-CH=CH-C[triple bond]N) has been prepared for the first time by flash vacuum pyrolysis at 800 degrees C of 3-(tert-butylthio)-2-propenenitrile with a yield of 77% and a Z:E ratio of 8:1. Several deuterium and 15N isotopologues were also prepared using isotopically enriched compounds. Quantum chemical calculations of the structural and conformational properties of the Z- and E-isomers were undertaken at the B3LYP/6-311++G(3df,2pd), MP2/6-311++G(3df,2pd), MP2/aug-cc-pVTZ, and G3 levels of theory. These methods all predict that the Z- and the E-forms each have two "stable" planar rotameric forms with the H-S-C=C link of atoms in either a synperiplanar or an antiperiplanar conformation, with the synperiplanar form of the Z-isomer as the global minimum. The Z-isomer has been investigated by means of Stark-modulation microwave spectroscopy. Spectra attributable to the parent and three deuterium-substituted isotopologues of a single conformer were recorded and assigned. Additionally, the spectrum belonging to the first excited state of the lowest bending vibration was assigned. The ground-state rotational constants obtained by the least-squares analysis of these transitions were found to be in excellent agreement with the corresponding approximate equilibrium values generated by the MP2/aug-cc-pVTZ calculations. The preferred conformer of this molecule was found to have a synperiplanar arrangement of the H-S-C=C chain of atoms and a planar or nearly planar geometry, with a stabilizing intramolecular hydrogen bond formed between the H atom of the thiol group and pi-electron density associated with the C[triple bond]N triple bond. The possible astrochemical/astrobiological significance of this compound is discussed.  相似文献   

18.
In the hydrogen‐bond patterns of phenyl bis(2‐chlorobenzylamido)phosphinate, C20H19Cl2N2O2P, (I), and N,N′‐bis(2‐chlorobenzyl)‐N′′‐(2,2,2‐trifluoroacetyl)phosphoric triamide, C16H15Cl2F3N3O2P, (II), the O atoms of the related phosphoryl groups act as double H‐atom acceptors, so that the P=O...(H—N)2 hydrogen bond in (I) and the P=O...(H—Namide)2 and C=O...H—NC(O)NHP(O) hydrogen bonds in (II) are responsible for the aggregation of the molecules in the crystal packing. The presence of a double H‐atom acceptor centre is a result of the involvement of a greater number of H‐atom donor sites with a smaller number of H‐atom acceptor sites in the hydrogen‐bonding interactions. This article also reviews structures having a P(O)NH group, with the aim of finding similar three‐centre hydrogen bonds in the packing of phosphoramidate compounds. This analysis shows that the factors affecting the preference of the above‐mentioned O atom to act as a double H‐atom acceptor are: (i) a higher number of H‐atom donor sites relative to H‐atom acceptor centres in molecules with P(=O)(NH)3, (N)P(=O)(NH)2, C(=O)NHP(=O)(NH)2 and (NH)2P(=O)OP(=O)(NH)2 groups, and (ii) the remarkable H‐atom acceptability of this atom relative to the other acceptor centre(s) in molecules containing an OP(=O)(NH)2 group, with the explanation that the N atom bound to the P atom in almost all of the structures found does not take part in hydrogen bonding as an acceptor. Moreover, the differences in the H‐atom acceptability of the phosphoryl O atom relative to the O atom of the alkoxy or phenoxy groups in amidophosphoric acid esters may be illustrated by considering the molecular packing of compounds having (O)2P(=O)(NH) and (O)P(=O)(NH)(N)groups, in which the unique N—H unit in the above‐mentioned molecules almost always selects the phosphoryl O atom as a partner in forming hydrogen‐bond interactions. The P atoms in (I) and (II) are in tetrahedral coordination environments, and the phosphoryl and carbonyl groups in (II) are anti with respect to each other (the P and C groups are separated by one N atom). In the crystal structures of (I) and (II), adjacent molecules are linked via the above‐mentioned hydrogen bonds into a linear arrangement parallel to [100] in both cases, in (I) by forming R22(8) rings and in (II) through a combination of R22(10) and R21(6) rings.  相似文献   

19.
The jet-cooled rotational spectrum of neutral alanine has been studied using laser-ablation molecular-beam Fourier transform microwave spectroscopy (LA-MB-FTMW). The spectra of the two most stable forms were observed in the frequency range 6-18 GHz for the parent, (15)N alanine, three single (13)C species, and four single D species. The (14)N nuclear quadrupole coupling hyperfine structures have been resolved, and their comparison with those calculated theoretically confirms unambiguously the conformer assignments. The independent structures of both conformers have been determined experimentally for the first time using r(s) and r(0) procedures. In both cases, the amino acid backbone is nonplanar. For the most stable conformer I, the COOH group adopts a cis configuration and an asymmetric bifurcated hydrogen bond is formed between the amino group and carbonyl oxygen (r(N-H(a)...O=C) = 2.70(2) A and r(N-H(b)...O=C) = 2.88(2) A). For conformer IIa, the COOH group adopts a trans configuration and is stabilized by a O-H...N hydrogen bond (r(O-H...N) = 1.96(2) A). The relative conformer abundances in the supersonic expansion have also been investigated.  相似文献   

20.
The title compound, C19H21N3O4S, crystallizes in the space group P2/c with two molecules in the asymmetric unit. The conformation of both molecules is very similar and is mainly determined by an intramolecular N—H...O hydrogen bond between a urea N atom and a sulfonyl O atom. The O and second N atom of the urea groups are involved in dimer formation via N—H...O hydrogen bonds. The intramolecular hydrogen‐bonding motif and conformation of the C—SO2—NH(C=O)—NH—C fragment are explored and compared using the Cambridge Structural Database and theoretical calculations. The crystal packing is characterized by π–π stacking between the 5‐cyanobenzene rings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号