首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Micro-bioreactor array for controlling cellular microenvironments   总被引:3,自引:0,他引:3  
High throughput experiments can be used to spatially and temporally investigate the many factors that regulate cell differentiation. We have developed a micro-bioreactor array (MBA) that is fabricated using soft lithography and contains twelve independent micro-bioreactors perfused with culture medium. The MBA enables cultivation of cells that are either attached to substrates or encapsulated in hydrogels, at variable levels of hydrodynamic shear, and with automated image analysis of the expression of cell differentiation markers. The flow and mass transport in the MBA were characterized by computational fluid dynamic (CFD) modeling. The representative MBA configurations were validated using the C2C12 cell line, primary rat cardiac myocytes and human embryonic stem cells (hESCs) (lines H09 and H13). To illustrate the utility of the MBA for controlled studies of hESCs, we established correlations between the expression of smooth muscle actin and cell density for three different flow configurations.  相似文献   

2.
The XPS spectra of thermally grown oxide layers on Si, Al, W and Hf substrates have been recorded while the samples were subjected to external d.c. voltage bias. The bias induces additional shifts in the measured binding energy differences between the XPS peaks of the oxide and that of the metal substrate in Si and Al (as probed both in the 2p and the KLL Auger regions), but not in W and Hf (as probed in the 4f region). These bias induced shifts are attributed to differential charging between the oxide layer and the substrate, which in turn is postulated to be related to the capacitance and inversely to the dielectric constant of the oxide layer. Accordingly, silicon dioxide with the smallest dielectric constant undergoes the largest differential charging, aluminium oxide is in the middle and no appreciable charging can be induced in the high‐k tungsten and hafnium oxides, all of which are ~6 nm thick. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

3.
We have constructed a novel class of light-activatable caged molecular beacons (cMBs) that are caged by locking two stems with a photo-labile biomolecular interaction or covalent bond. With the cMBs, the nucleic acid hybridization process can be easily controlled with light, which offers the possibility for a high spatiotemporal resolution study of intracellular mRNAs.  相似文献   

4.
This is the third paper on the cellular method for polyatomic systems. We show how to deal with nonspherical Coulomb potentials. We also show how to modify the variational expression for the energy eigenvalues so as to obtain a faster convergence in the angular momentum series for the wavefunctions. We apply both techniques to the self-consistent calculation of SF6. Contrary to what we obtained in CH4 and SiH4, the cellular method cannot yield the correct equilibrium interatomic distance in the present case. The calculated ionization potentials are in the correct order but are all shifted by 2–3 eV. This shift is attributed to the wrong expression for exchange correlation.  相似文献   

5.
6.
Poly(N-isopropyl acrylamide) or pNIPAM is a thermoresponsive polymer that is widely studied for use in bioengineering applications. The interest in this polymer lies in the polymer's unique capability to undergo a sharp property change near physiological temperature, which aids in the spontaneous release of biological cells from substrates. Currently, there are many methods for depositing pNIPAM onto substrates, including atom-transfer radical polymerization (ATRP) and electron beam ionization. Each method yields pNIPAM-coated substrates with different surface characteristics that can influence cell behavior. In this work, we compare two methods of pNIPAM deposition: plasma deposition and codeposition with a sol-gel. The resulting pNIPAM films were analyzed for use as substrates for mammalian cell culture based on surface characterization (XPS, ToF-SIMS, AFM, contact angles), cell attachment/detachment studies, and an analysis of exocytosis function using carbon-fiber microelectrode amperometry (CFMA). We find that although both methods are useful for the deposition of functional pNIPAM films, plasma deposition is much preferred for cell-sheet engineering applications because of the films' thermoresponse, minimal change in cell density, and maintenance of supported cell exocytosis function.  相似文献   

7.
Five vanilla-related flavors of food significance, vanillic alcohol (VOH), ethyl maltol (EMA), maltol (MAL), ethyl vanillin (EVA) and vanillin (VAN), were separated using CE microchips with electrochemical detection (CE-ED microchips). A +2 kV driving voltage for both injection and separation operation steps, using a borate buffer (pH 9.5, 20 mM) and 1 M nitric acid in the detection reservoir allowed the selective and sensitive detection of the target analytes in less than 200 s with reproducible control of EOF (RSD(migration times)<3%). The analysis in selected real vanilla samples was focusing on VAN and EVA because VAN is a basic fragrance compound of the vanilla aroma, whereas EVA is an unequivocal proof of adulteration of vanilla flavors. Fast detection of all relevant flavors (200 s) with an acceptable resolution (R(s) >1.5) and a high accuracy (recoveries higher than 90%) were obtained with independence of the matrices and samples examined. These results showed the reliability of the method and the potential use of CE microchips in the food control field for fraudulent purposes.  相似文献   

8.
The non-linear response is generally the main limitation to the general quantitative use of evaporative light-scattering detection (ELSD). In the particular case of triacylglycerol (TG) analysis, we present a preliminary paper dealing with the use of post-column additives as a means of monitoring the response of such a detector. As TG can form molecular association complexes (ligand-ligate associations) with either cholesterol, urea or silver nitrate, we report the influence of the concentration of each of these chemical compounds in the liquid phase directed towards the ELSD system. The results show that the response coefficient b of the calibration curve either decreases from 1.25-1.30 to 0.51 or increases from 1.25-1.30 to 1.78 according to the nature and concentration of post-column additive. The use of cholesterol as additive, at a discrete concentration, may lead to a linear response curve (b = 1), i.e. to the direct proportionality of ELSD response versus the TG concentration, making quantitative analysis of such solutes easier. On the other hand, to improve sensitivity, the addition of silver nitrate may be chosen for an increase in b value.  相似文献   

9.
The fabrication of micropatterned structures on PDMS is a critical step in soft lithography, microfluidics, and many other PDMS-based applications. To substitute traditional mold-casting methods, we develop a simple method to create micropatterned nanostructures on PDMS in one step. After exposing a flat PDMS surface to a UV pen lamp through a photomask (such as a TEM grid), micropatterned nanostructures can be formed readily on the PDMS surface. We also demonstrate that fabricated PDMS can be used for the microcontact printing of protein immunoglobulin (IgG) on solid surfaces. This method is probably the simplest method of creating micropatterned nanostructures on PDMS reported so far because it does not need casting, surface coating, or chemical reagents. Only a UV pen lamp and a photomask are required, and this method can be performed under ambient conditions without vacuum. We expect that this method will greatly benefit researchers who use PDMS regularly in various applications such as soft lithography and microfluidics.  相似文献   

10.
This paper aims to effectively improve acoustic property of polyimide foam (PIF) by regulating cellular structure of PIF on a large scale and introducing sharp hole structure simultaneously, adopting a special mold with split structure in a closed-mold foaming route. In this work, PIF with same split structure but different pore cell sizes, density, and windows opening rate were produced in the first time. Due to the stepwise transition principle, the impedance of the air acoustic medium and the acoustic material was well matched. In addition, the characterization results showed the effectively effects of microporous structure and split structure characteristics of PIF on the acoustical absorption coefficient. For PIF-4, sound absorption coefficient kept around 0.9 from 900 to 6300 Hz. Especially, the resonance sound absorption characteristics was basically eliminated, which ensured the high efficiency sound absorption behavior of PIF in the broadband range from 600 to 6300 Hz region.  相似文献   

11.
We describe an algorithm for the automated generation of molecular structures subject to geometric and connectivity constraints. The method relies on simulated annealing and simplex optimization of a penalty function that contains a variety of conditions and can be useful in structure-based drug design projects. The procedure controls the diversity and complexity of the generated molecules. Structure selection filters are an integral part and drive the algorithm. Several procedures have been developed to achieve reliable control. A number of template sets can be defined and combined to control the range of molecules which are searched. Ring systems are predefined. Normally, the ring-system complexity is one of the most elusive and difficult factors to control when fusion-, bridge- and spiro-structures are built by joining templates. Here this is not an issue; the decision about which systems are acceptable, and which are not, is made before the run is initiated. Queries for inclusion and exclusion spheres are incorporated into the objective function, and, by using a flexible notation, the structure generation can be directed and more focused. Simulated annealing is a reliable optimizer and converges asymptotically to the global minimum. The objective functions used here are degenerate, so it is likely that each run will produce a different set of good solutions.  相似文献   

12.
Engineering contributions have played an important role in the rise and evolution of cellular biology. Engineering technologies have helped biologists to explore the living organisms at cellular and molecular levels, and have created new opportunities to tackle the unsolved biological problems. There is now a growing demand to further expand the role of engineering in cellular biology research. For an engineer to play an effective role in cellular biology, the first essential step is to understand the cells and their components. However, the stumbling block of this step is to comprehend the information given in the cellular biology literature because it best suits the readers with a biological background. This paper aims to overcome this bottleneck by describing the human cell components as micro-plants that form cells as micro-bio-factories. This concept can accelerate the engineers' comprehension of the subject. In this paper, first the structure and function of different cell components are described. In addition, the engineering attempts to mimic various cell components through numerical modelling or physical implementation are highlighted. Next, the interaction of different cell components that facilitate complicated chemical processes, such as energy generation and protein synthesis, are described. These complex interactions are translated into simple flow diagrams, generally used by engineers to represent multi-component processes.  相似文献   

13.
In this study, a simple method was developed to crosslink chitosan using poly(ethylene glycol) (PEG) with different molecular weights. Crosslinking of chitosan was confirmed by various spectral analyses. The differential scanning calorimetric (DSC) study indicated that the rigid crystalline structure of chitosan was decreased after crosslinking with PEG. The PEG-crosslinked chitosan (PEG-Ch) showed a pH-independent swelling behavior: swelled in both the simulated stomach (pH 1.1) and intestinal (pH 7.4) solutions. The swelling ratio of PEG-Ch increased significantly with a higher molecular weight of PEG used. In contrast, chitosan dissolved completely in a simulated stomach solution and showed a comparatively less swelling in a simulated intestinal solution. Thus, the prepared PEG-Ch could be a better biomaterial than chitosan in the development of orally sustained drug-delivery devices.  相似文献   

14.
A new determination method of proteins with the limit of determination at nanogram levels is proposed by using a common spectrofluorimeter to detect intensity of resonance double line scattering (RDLS). Proteins including bovine serum albumin (BSA), human serum albumin (HSA) can combine with morin and cetyltrimethylammonium briomide (CTMAB) in the pH range 7.0-8.0 and produce enhanced RDLS signal at lambda(ex)/lambda(em) 305.0/610.0 nm. Optimization conditions for the morin-protein-CTMAB interaction were tested. In the studied system, BSA/CTMAB/morin = 1:2:3. The association constant of morin with BSA is 5.2 x 10(4). Under the optimum conditions, the linear range is 7.5 x 10(-8)-1.0 x 10(-5) g/ml for BSA, 2.5 x 10(-8)-5.0 x 10(-6) g/ml for HSA. The detection limits (S/N = 3) are 66.0 ng/ml for BSA and 23.0 ng/ml for HSA, respectively. Four synthetic samples were analyzed satisfactorily.  相似文献   

15.
An innovative solvent delivery method termed solvent modulation has been developed to control solute retention in liquid chromatography. Solvent modulation is the technique whereby individual solvent zones are introduced onto the chromatographic column in a known random orrepeating sequence. Because the solvent zones are of constant composition and are spatially separated from one another, solute retention is controlled independently in each zone. Hence, the overall retention of a solute is a time-weighted average of the capacity factors in the solvent zones it has encountered. Solvent modulation offers a simple, versatile, and accurately modeled means to control and predict solute retention in liquid chromatography.  相似文献   

16.
The EQCM: electrogravimetry with a light touch   总被引:1,自引:0,他引:1  
In its simplest manifestation, the electrochemical quartz crystal microbalance (EQCM) is a relatively new device for executing a classical technique, electrogravimetry. The advantages it brought were in situ applicability (notwithstanding prior misconceptions regarding damping by a contacting fluid), exceptional sensitivity and dynamic capability, thereby permitting real-time monitoring of changes in surface populations of species during electrochemically driven processes. The basis of the method relies on the storage and dissipation of energy injected into the interfacial region by a high frequency (megahertz) acoustic wave; the latter is generated by a piezoelectric (generally quartz) resonator. From modest early aspirations, largely associated with the deposition/dissolution of simple adsorbates and thin metal films, the technique has expanded in three strategic respects: materials, phenomena and methodology. In the first instance, extension to thick electroactive films (notably metal oxides and polymers) has generated considerable insight. Second, the sensitivity of the EQCM to viscoelastic phenomena, stress and interfacial slip has been recognized. Considerable attention has been given to viscoelastic processes in redox and conducting polymers: these have been parameterized in terms of shear moduli, whose variation with polymer structure and imposed conditions provides insight into polymer dynamics. Procedures exist for characterizing film stress in harder materials, but this is less well exploited. Interfacial slip remains a poorly understood area. Third, application in the context of diverse electrochemical control functions and integration with other in situ techniques provide many as yet unexploited opportunities. The extent to which these are realised will probably depend on the level of interpretation of the resultant data, which presently underuses the library of modelling protocols available.  相似文献   

17.
A new technique for controlling discrete sample injection in straight-cross microfluidic chips is presented here. This technique involves a three-part process with a dynamic loading step in between the steady-state loading step and the dispensing step. During the intermediate step, sample is pumped into the intersection and into the three connecting channels. The key features of this technique are the ability to dynamically control the sample size and the ability to inject well-defined samples at the original sample concentration. Injections of these samples with lengths varying from 2 channel widths (100 microm) to 20 channel widths (millimeter-sized) are demonstrated. The sample concentration profiles obtained are compared with those of focused and less-focused pinched-valve injections. In applications such as high-speed capillary zone electrophoresis, this technique can provide an increase in signal with a small increase in sample length. This technique is especially applicable to many large-sample applications in which the offset twin-T microchip has been previously employed.  相似文献   

18.
A new method is presented for olefin production by oxidative dehydrogenation-cracking of light alkanes. ZSM-5 zeolites modified by Co, Mo, K, Ca, Mg, etc., were used as catalysts. The selectivity of olefins in the oxidative dehydrogenation-cracking of n-pentane and n-hexane greatly increased in comparison with that in catalytic cracking on USY-zeolites.  相似文献   

19.
The resonance Rayleigh scattering (RRS), second-order scattering (SOS) and frequency-double scattering (FDS) spectra of sodium dodecylbenzene sulfonate (SDBS) (anionic surfactant (AS)) with acridine orange (AO) system were studied. Experimental results showed that when lambda(em) = lambda(ex) = 537 nm, the RRS peak of AO was greatly enhanced with the increase of SDBS concentration at a pH range of 1.8-4.0. The linear range of the calibration curve for SDBS was 0.028-8.71 mg L(-1) with a detection limit of 8.36 microg L(-1) when the AO concentration was 2.5 x 10(-5)mol L(-1). The method has been applied to the determination of trace amount of AS in environmental water samples with satisfactory results. In addition, when lambda(em) = 321 nm and lambda(ex) = 642 nm, the intensity of FDS was proportional to the SDBS concentration ranging from 0.014 to 8.71 mg L(-1) and the correlation coefficient was 0.993 with a detection limit of 4.31 microg L(-1); when lambda(em) = 642 nm and lambda(ex) = 321 nm, the intensity of SOS was proportional to the SDBS concentration ranging from 0.050 to 8.71 mg L(-1), and the correlation coefficient was 0.993 with a detection limit of 14.9 microg L(-1).  相似文献   

20.
A novel parallel monomer combination approach to manipulating the architectural disposition of dendritic macromolecules is described. It harnesses the synthetic speed and power of the double-stage convergent growth approach and classical parallel synthesis to prepare diverse series of dendrimers that possess a predetermined number and arrangement of "internal" functional moieties. This methodology is applied for the preparation of a novel family of poly(benzyl ether) dendrimers possessing 1-15 "internal" allyloxy groups, which are displayed in a highly controlled, layer-specific, generational manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号