首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Donor-bridge-acceptor (D-B-A) systems in which a 3,5-dimethyl-4-(9-anthracenyl)julolidine (DMJ-An) chromophore and a naphthalene-1,8:4,5-bis(dicarboximide) (NI) acceptor are linked by oligomeric 2,7-fluorenone (FN(n)) bridges (n = 1-3) have been synthesized. Selective photoexcitation of DMJ-An quantitatively produces DMJ(+?)-An(-?), and An(-?) acts as a high-potential electron donor. Femtosecond transient absorption spectroscopy in the visible and mid-IR regions showed that electron transfer occurs quantitatively in the sequence: DMJ(+?)-An(-?)-FN(n)-NI → DMJ(+?)-An-FN(n)(-?)-NI → DMJ(+?)-An-FN(n)-NI(-?). The charge-shift reaction from An(-?) to NI(-?) exhibits an exponential distance dependence in the nonpolar solvent toluene with an attenuation factor (β) of 0.34 ?(-1), which would normally be attributed to electron tunneling by the superexchange mechanism. However, the FN(n)(-?) radical anion was directly observed spectroscopically as an intermediate in the charge-separation mechanism, thereby demonstrating conclusively that the overall charge separation involves the incoherent hopping (stepwise) mechanism. Kinetic modeling of the data showed that the observed exponential distance dependence is largely due to electron injection onto the first FN unit followed by charge hopping between the FN units of the bridge biased by the distance-dependent electrostatic attraction of the two charges in D(+?)-B(-?)-A. This work shows that wirelike behavior does not necessarily result from building a stepwise, energetically downhill redox gradient into a D-B-A molecule.  相似文献   

2.
The temperature dependence of spin-selective intramolecular charge recombination (CR) in a series of 2,7-fluorenone (FN(1-2)) and p-phenylethynylene (PE(1-2)P) linked donor-bridge-acceptor molecules with a 3,5-dimethyl-4-(9-anthracenyl) julolidine (DMJ-An) electron donor and a naphthalene-1,8:4,5-bis(dicarboximide) (NI) acceptor was studied using nanosecond transient absorption spectroscopy in the presence of a static magnetic field. Photoexcitation of DMJ-An into its charge transfer band and subsequent electron transfer to NI results in a nearly quantitative yield of (1)(DMJ(+?)-An-FN(n)-NI(-?)) and (1)(DMJ(+?)-An-PE(n)P-NI(-?)), which undergo rapid radical pair intersystem crossing (RP-ISC) to produce the triplet RPs, (3)(DMJ(+?)-An-FN(n)-NI(-?)) and (3)(DMJ(+?)-An-PE(n)P-NI(-?)), respectively. The CR rate constants, k(CR), in toluene were measured over a temperature range from 270 to 350 K, and a kinetic analysis of k(CR) in the presence of an applied static magnetic field was used to extract the singlet and triplet charge recombination rate constants, k(CRS) and k(CRT), respectively, as well as the intersystem crossing rate constant, k(ST). Plots of ln (kT(1/2)) versus 1/T for PE(1)P show a distinct crossover at 300 K from a temperature-independent singlet CR pathway to a triplet CR pathway that is positively activated with a barrier of 1047 ± 170 cm(-1). The singlet CR pathway via the FN(1) bridge displays a negative activation energy that results from donor-bridge and bridge-acceptor torsional motions about the single bonds joining them. In contrast, the triplet CR pathway via the FN(1-2) and PE(1-2)P bridges exhibits positive activation energies. The activation barriers to these torsional motions range from 1100 to 4500 cm(-1) and can be modeled by semiclassical electron transfer theory.  相似文献   

3.
A series of DNA hairpins (AqGn) possessing a tethered anthraquinone (Aq) end-capping group were synthesized in which the distance between the Aq and a guanine-cytosine (G-C) base pair was systematically varied by changing the number (n - 1) of adenine-thymine (A-T) base pairs between them. The photophysics and photochemistry of these hairpins were investigated using nanosecond transient absorption and time-resolved electron paramagnetic resonance (TREPR) spectroscopy. Upon photoexcitation, (1*)Aq undergoes rapid intersystem crossing to yield (3*)Aq, which is capable of oxidizing purine nucleobases resulting in the formation of (3)(Aq(-?)Gn(+?)). All (3)(Aq(-?)Gn(+?)) radical ion pairs exhibit asymmetric TREPR spectra with an electron spin polarization phase pattern of absorption and enhanced emission (A/E) due to their different triplet spin sublevel populations, which are derived from the corresponding non-Boltzmann spin sublevel populations of the (3*)Aq precursor. The TREPR spectra of the (3)(Aq(-?)Gn(+?)) radical ion pairs depend strongly on their spin-spin dipolar interaction and weakly on their spin-spin exchange coupling. The anisotropy of (3)(Aq(-?)Gn(+?)) makes it possible to determine that the π systems of Aq(-?) and G(+?) within the radical ion pair are parallel to one another. Charge recombination of the long-lived (3)(Aq(-?)Gn(+?)) radical ion pair displays an unusual bimodal distance dependence that results from a change in the rate-determining step for charge recombination from radical pair intersystem crossing for n < 4 to coherent superexchange for n > 4.  相似文献   

4.
Intersystem crossing involving photogenerated strongly spin exchange-coupled radical ion pairs in a series of donor-bridge-acceptor molecules was examined. These molecules have a 3,5-dimethyl-4-(9-anthracenyl)-julolidine (DMJ-An) donor either connected directly or connected by a phenyl bridge (Ph), to pyromellitimide (PI), 1 and 2, respectively, or naphthalene-1,8:4,5-bis(dicarboximide) (NI) acceptors, 3 and 4, respectively. Femtosecond transient optical absorption spectroscopy shows that photodriven charge separation produces DMJ(+?)-PI(-?) or DMJ(+?)-NI(-?) quantitatively in 1-4 (τ(CS) ≤ 10 ps), and that charge recombination occurs with τ(CR) = 268 and 158 ps for 1 and 3, respectively, and with τ(CR) = 2.6 and 10 ns for 2 and 4, respectively. Magnetic field effects (MFEs) on the neutral triplet state yield produced by charge recombination were used to measure the exchange coupling (2J) between DMJ(+?) and PI(-?) or NI(-?), giving 2J > 600 mT for 1-3 and 2J = 170 mT for 4. Time-resolved electron paramagnetic resonance (TREPR) spectroscopy revealed that the formation of (3)*An upon charge recombination occurs by spin-orbit charge transfer intersystem crossing (SOCT-ISC) and/or radical-pair intersystem crossing (RP-ISC) mechanisms with the magnitude of 2J determining which triplet formation mechanism dominates. SOCT-ISC is the exclusive triplet formation mechanism in 1-3, whereas both RP-ISC and SOCT-ISC are active for 4. The triplet sublevels populated by SOCT-ISC in 1-4 depend on the donor-acceptor geometry in the charge separated state. This is consistent with the fact that the SOCT-ISC mechanism requires the relevant donor and acceptor orbitals to be nearly perpendicular, so that electron transfer results in a large orbital angular momentum change that must be compensated by a fast spin flip to conserve overall system angular momentum.  相似文献   

5.
Lanthanum oxide cluster anions are prepared by laser ablation and reacted with n-C(4)H(10) in a fast flow reactor. A time-of-flight mass spectrometer is used to detect the cluster distribution before and after the reactions. (La(2)O(3))(m=1-3)OH(-) and La(3)O(7)H(-) are observed as products, which suggests the occurrence of hydrogen atom abstraction reactions: (La(2)O(3))(m=1-3)O(-) + n-C(4)H(10) → (La(2)O(3))(m=1-3)OH(-) + C(4)H(9) and La(3)O(7)(-) + n-C(4)H(10) → La(3)O(7)H(-) + C(4)H(9). Density functional theory (DFT) calculations are performed to study the structures and bonding properties of La(2)O(4)(-), La(3)O(7)(-), and La(4)O(7)(-) clusters. The calculated results show that each of La(2)O(4)(-) and La(4)O(7)(-) contains one oxygen-centered radical (O(-?)) which is responsible for the high reactivity toward n-C(4)H(10). La(3)O(7)(-) contains one oxygen-centered radical (O(-?)) and one superoxide unit (O(2)(-?)), and the O(-?) is responsible for its high reactivity toward n-C(4)H(10). The O(-?) and O(2)(-?) can be considered to be generated by the adsorption of an O(2) molecule onto the singlet La(3)O(5)(-) with electron transfer from a terminally bonded oxygen ion (O(2-)) to the O(2). This may help us understand the mechanism of the formation of O(-?) and O(2)(-?) radicals in lanthanum oxide systems. The reaction mechanisms of La(2)O(4)(-) + n-C(4)H(10) and La(3)O(7)(-) + n-C(4)H(10) are also studied by the DFT calculations, and the calculated results are in good agreement with the experimental observations.  相似文献   

6.
Steady state and laser flash photolysis (LFP) of a series of p-X-cumyl phenyl sulfides (4-X-C(6)H(4)C(CH(3))(2)SC(6)H(5): 1, X = Br; 2, X = H; 3, X = CH(3); 4, X = OCH(3)) and p-X-cumyl p-methoxyphenyl sulfides (4-X-C(6)H(4)C(CH(3))(2)SC(6)H(4)OCH(3): 5, X = H; 6, X = CH(3); 7, X = OCH(3)) has been carried out in the presence of N-methoxy phenanthridinium hexafluorophosphate (MeOP(+)PF(6)(-)) under nitrogen in MeCN. Steady state photolysis showed the formation of products deriving from the C-S bond cleavage in the radical cations 1(+?)-7(+?) (2-aryl-2-propanols and diaryl disulfides). Formation of 1(+?)-7(+?) was also demonstrated by LFP experiments evidencing the absorption bands of the radical cations 1(+?)-3(+?) (λ(max) = 530 nm) and 5(+?)-7(+?) (λ(max) = 570 nm) mainly localized in the arylsulfenyl group and radical cation 4(+?) (λ(max) = 410, 700 nm) probably mainly localized in the cumyl ring. The radical cations decayed by first-order kinetics with a process attributable to the C-S bond cleavage. On the basis of DFT calculations it has been suggested that the conformations most suitable for C-S bond cleavage in 1(+?)-4(+?) and 7(+?) are characterized by having the C-S bond almost collinear with the π system of the cumyl ring and by a significant charge and spin delocalization from the ArS ring to the cumyl ring. Such a delocalization is probably at the origin of the observation that the rates of C-S bond cleavage result in very little sensitivity to changes in the C-S bond dissociation free energy (BDFE). A quite large reorganization energy value (λ = 43.7 kcal mol(-1)) has been calculated for the C-S bond scission reaction in the radical cation. This value is much larger than that (λ = 12 kcal mol(-1)) found for the C-C bond cleavage in bicumyl radical cations, a reaction that also leads to cumyl carbocations.  相似文献   

7.
The photophysics and morphology of thin films of N,N-bis(2,6-diisopropylphenyl)perylene-3,4:9,10-bis(dicarboximide) (1) and the 1,7-diphenyl (2) and 1,7-bis(3,5-di-tert-butylphenyl) (3) derivatives blended with 6,13-bis(triisopropylsilylethynyl)pentacene (TIPS-Pn) were studied for their potential use as photoactive layers in organic photovoltaic (OPV) devices. Increasing the steric bulk of the 1,7-substituents of the perylene-3,4:9,10-bis(dicarboximide) (PDI) impedes aggregation in the solid state. Film characterization data using both atomic force microscopy and X-ray diffraction showed that decreasing the PDI aggregation by increasing the steric bulk in the order 1 < 2 < 3 correlates with a decrease in the density/size of crystalline TIPS-Pn domains. Transient absorption spectroscopy was performed on ~100 nm solution-processed TIPS-Pn:PDI blend films to characterize the charge separation dynamics. These results showed that selective excitation of the TIPS-Pn results in competition between ultrafast singlet fission ((1*)TIPS-Pn + TIPS-Pn → 2 (3*)TIPS-Pn) and charge transfer from (1*)TIPS-Pn to PDIs 1-3. As the blend films become more homogeneous across the series TIPS-Pn:PDI 1 → 2 → 3, charge separation becomes competitive with singlet fission. Ultrafast charge separation forms the geminate radical ion pair state (1)(TIPS-Pn(+?)-PDI(-?)) that undergoes radical pair intersystem crossing to form (3)(TIPS-Pn(+?)-PDI(-?)), which then undergoes charge recombination to yield either (3*)PDI or (3*)TIPS-Pn. Energy transfer from (3*)PDI to TIPS-Pn also yields (3*)TIPS-Pn. These results show that multiple pathways produce the (3*)TIPS-Pn state, so that OPV design strategies based on this system must utilize this triplet state for charge separation.  相似文献   

8.
We have studied spin-dependent charge transfer dynamics in wirelike donor-bridge-acceptor (D-B-A) molecules comprising a phenothiazine (PTZ) donor, an oligo(2,7-fluorene) (FL(n)) bridge, and a perylene-3,4:9,10-bis(dicarboximide) (PDI) acceptor, PTZ-FL(3)-PDI (1) and PTZ-FL(4)-PDI (2), dissolved in the magnetic field-aligned nematic phase of 4-cyano-4'-n-pentylbiphenyl (5CB) at 295 K. Time-resolved EPR spectroscopy using both continuous wave and pulsed microwaves shows that the photogenerated radical pairs (RPs), PTZ(+?)-FL(3)-PDI(-?) and PTZ(+?)-FL(4)-PDI(-?), recombine much faster from the singlet RP manifold than the triplet RP manifold. When a strong resonant microwave π pulse is applied following RP photogeneration in 1 and 2, the RP lifetimes increase about 50-fold as indicated by electron spin-echo detection. This result shows that the RP lifetime can be greatly extended by rapidly switching off fast triplet RP recombination.  相似文献   

9.
One electron paramagnetic parent osazone complex of rhodium of type trans-Rh(L(NHPh)H(2))(PPh(3))(2)Cl(2) (1), defined as an osazone anion radical complex of rhodium(III), trans-Rh(III)(L(NHPh)H(2)(?-))(PPh(3))(2)Cl(2), 1((t-RhL?)), with a minor contribution (~2%) of rhodium(II) electromer, trans-Rh(II)(L(NHPh)H(2))(PPh(3))(2)Cl(2), 1((t-Rh?L)), and their nonradical congener, trans-[Rh(III)(L(NHPh)H(2))(PPh(3))(2)Cl(2)]I(3) ([t-1](+)I(3)(-)), have been isolated and are substantiated by spectra, bond parameters, and DFT calculations on equivalent soft complexes [Rh(L(NHPh)H(2))(PMe(3))(2)Cl(2)] (3) and [Rh(L(NHPh)H(2))(PMe(3))(2)Cl(2)](+) (3(+)). 1 is not stable in solution and decomposes to [t-1](+) and a new rhodium(I) osazone complex, [Rh(I)(L(NHPh)H(2))(PPh(3))Cl] (2). 1 absorbs strongly at 351 nm due to MLCT and LLCT, while [t-1](+) and 2 absorb moderately in the range of 300-450 nm, respectively, due to LMCT and MLCT elucidated by TD-DFT calculations on 3((t-RhL?)), [t-3](+), and Rh(I)(L(NHPh)H(2))(PMe(3))Cl (4). EPR spectra of solids at 295 and 77 K, and dichloromethane-toluene frozen glass at 77 K of 1 are similar with g = 1.991, while g = 2.002 for the solid at 25 K. The EPR signal of 1 in dichloromethane solution is weaker (g = 1.992). In cyclic voltammetry, 1 displays two irreversible one electron transfer waves at +0.13 and -1.22 V, with respect to Fc(+)/Fc coupling, due to oxidation of 1((t-RhL?)) to [t-1](+) at the anode and reduction of rhodium(III) to rhodium(II), i.e., [t-1](+) to electromeric 1((t-Rh?L)) at the cathode.  相似文献   

10.
The dimeric complex [Mn(III)(2)(Naphth-sao)(2)(Naphth-saoH)(2)(MeOH)(2)]·4MeOH (1·4MeOH), acts as a simple model complex with which to examine the magneto-structural relationship in polymetallic, oxime-bridged Mn(III) complexes. Dc magnetic susceptibility studies reveal that ferromagnetic exchange is mediated through the heavily twisted Mn-O-N-Mn moiety (J = +1.24 cm(-1)) with magnetisation measurements at low temperatures and high fields suggesting significant anisotropy. Simulations of high field, high frequency EPR data reveal a single ion anisotropy, D((Mn(III))) = -3.94 cm(-1). Theoretical studies on simplified model complexes of 1 reveal that calculated values of the exchange coupling and the anisotropy are in excellent agreement with experiment, with the weak ferromagnetism resulting from an accidental orthogonality between the Mn-N-O plane of the first Mn(III) ion and the Jahn-Teller axis of the second Mn(III) ion.  相似文献   

11.
Photoinduced electron transfer has been observed in a molecular triad, consisting of a porphyrin (P) covalently linked to a tetrathiafulvalene (TTF) and a fullerene derivative (C(60)), in the different phases of the liquid crystal E-7 and in a glass of 2-methyltetrahydrofuran (2-MeTHF) by means of time-resolved electron paramagnetic resonance (EPR) spectroscopy. In both solvents, an EPR signal observed immediately after excitation has been assigned to the radical pair TTF(*+)-P-C(60)(*-), based on its magnetic interaction parameters and spin polarization pattern. In the 2-MeTHF glass and the crystalline phase of E-7, the TTF(*+)-P-C(60)(*-) state is formed from the TTF-(1)P-C(60) singlet state via an initial TTF-P(*+)-C(60)(*-) charge-separated state. Long-lived charge separation ( approximately 8 mus) for the singlet-born radical pair is observed in the 2-MeTHF glass at cryogenic temperatures. In the nematic phase of E-7, a high degree of ordering in the liquid crystal is achieved by the molecular triad. In this phase, both singlet- and triplet-initiated electron transfer routes are concurrently active. At room temperature in the presence of the external magnetic field, the triplet-born radical pair (T)(TTF(*+)-P-C(60)(*-)) has a lifetime of approximately 7 mus, while that of the singlet-born radical pair (S)(TTF(*+)-P-C(60)(*-)) is much shorter (<1 mus). The difference in lifetimes is ascribed to spin dynamic effects in the magnetic field.  相似文献   

12.
Chemical and electrochemical reductions of the macrocycle 1 lead to the formation of a radical monoanion anion [1](*)(-) whose structure has been studied by EPR in liquid and frozen solutions. In accord with experimental (31)P hyperfine tensors, DFT calculations indicate that, in this species, the unpaired electron is mainly localized in a bonding sigma P-P orbital. Clearly, a one-electron bond (2.763 A) was formed between two phosphorus atoms which, in the neutral molecule, were 3.256 A apart (crystal structure). A subsequent reduction of this radical anion gives rise to the dianion [1](2)(-) which could be crystallized by using, in the presence of cryptand, Na naphthalenide as a reductant agent. As shown by the crystal structure, in [1](2)(-), the two phosphinine moieties adopt a phosphacyclohexadienyl structure and are linked by a P-P bond whose length (2.305(2) A) is only slightly longer than a usual P-P bond. When the phosphinine moieties are not incorporated in a macrocycle, no formation of any one-electron P-P bond is observed: thus, one-electron reduction of 3 with Na naphthalenide leads to the EPR spectrum of the ion pair [3](*)(-) Na(+); however, at high concentration, these ion pairs dimerize, and, as shown by the crystal structure of [(3)(2)](2)(-)[(Na(THF)(2))(2)](2+) a P-P bond is formed (2.286(2) A) between two phosphinine rings which adopt a boat-type conformation, the whole edifice being stabilized by two carbon-sodium-phosphorus bridges.  相似文献   

13.
The spin-spin exchange interaction, 2J, in a radical ion pair produced by a photoinduced electron transfer reaction can provide a direct measure of the electronic coupling matrix element, V, for the subsequent charge recombination reaction. We have developed a series of dyad and triad donor-acceptor molecules in which 2J is measured directly as a function of incremental changes in their structures. In the dyads the chromophoric electron donors 4-(N-pyrrolidinyl)- and 4-(N-piperidinyl)naphthalene-1,8-dicarboximide, 5ANI and 6ANI, respectively, and a naphthalene-1,8:4,5-bis(dicarboximide) (NI) acceptor are linked to the meta positions of a phenyl spacer to yield 5ANI-Ph-NI and 6ANI-Ph-NI. In the triads the same structure is used, except that the piperidine in 6ANI is replaced by a piperazine in which a para-X-phenyl, where X = H, F, Cl, MeO, and Me(2)N, is attached to the N' nitrogen to form a para-X-aniline (XAn) donor to give XAn-6ANI-Ph-NI. Photoexcitation yields the respective 5ANI(+)-Ph-NI(-), 6ANI(+)-Ph-NI(-), and XAn(+)-6ANI-Ph-NI(-) singlet radical ion pair states, which undergo subsequent radical pair intersystem crossing followed by charge recombination to yield (3)NI. The radical ion pair distances within the dyads are about 11-12 A, whereas those in the triads are about approximately 16-19 A. The degree of delocalization of charge (and spin) density onto the aniline, and therefore the average distance between the radical ion pairs, is modulated by the para substituent. The (3)NI yields monitored spectroscopically exhibit resonances as a function of magnetic field, which directly yield 2J for the radical ion pairs. A plot of ln 2J versus r(DA), the distance between the centroids of the spin distributions of the two radicals that comprise the pair, yields a slope of -0.5 +/- 0.1. Since both 2J and k(CR), the rate of radical ion pair recombination, are directly proportional to V(2), the observed distance dependence of 2J shows directly that the recombination rates in these molecules obey an exponential distance dependence with beta = 0.5 +/- 0.1 A(-)(1). This technique is very sensitive to small changes in the electronic interaction between the two radicals and can be used to probe subtle structural differences between radical ion pairs produced from photoinduced electron transfer reactions.  相似文献   

14.
The synthesis and photoinduced charge transfer properties of a series of Chl-based donor-acceptor triad building blocks that self-assemble into cyclic tetramers are reported. Chlorophyll a was converted into zinc methyl 3-ethylpyrochlorophyllide a (Chl) and then further modified at its 20-position to covalently attach a pyromellitimide (PI) acceptor bearing a pyridine ligand and one or two naphthalene-1,8:4,5-bis(dicarboximide) (NDI) secondary electron acceptors to give Chl-PI-NDI and Chl-PI-NDI(2). The pyridine ligand within each ambident triad enables intermolecular Chl metal-ligand coordination in dry toluene, which results in the formation of cyclic tetramers in solution, as determined using small- and wide-angle X-ray scattering at a synchrotron source. Femtosecond and nanosecond transient absorption spectroscopy of the monomers in toluene-1% pyridine and the cyclic tetramers in toluene shows that the selective photoexcitation of Chl results in intramolecular electron transfer from (1*)Chl to PI to form Chl(+?)-PI(-?)-NDI and Chl(+?)-PI(-?)-NDI(2). This initial charge separation is followed by a rapid charge shift from PI(-?) to NDI and subsequent charge recombination of Chl(+?)-PI-NDI(-?) and Chl(+?)-PI-(NDI)NDI(-?) on a 5-30 ns time scale. Charge recombination in the Chl-PI-NDI(2) cyclic tetramer (τ(CR) = 30 ± 1 ns in toluene) is slower by a factor of 3 relative to the monomeric building blocks (τ(CR) = 10 ± 1 ns in toluene-1% pyridine). This indicates that the self-assembly of these building blocks into the cyclic tetramers alters their structures in a way that lengthens their charge separation lifetimes, which is an advantageous strategy for artificial photosynthetic systems.  相似文献   

15.
Photoexcitation of a series of donor-bridge-acceptor (D-B-A) systems, where D = phenothiazine (PTZ), B = p-phenylene (Phn), n = 1-5, and A= perylene-3,4:9,10-bis(dicarboximide) (PDI) results in rapid electron transfer to produce 1(PTZ+*-Phn-PDI-*). Time-resolved EPR (TREPR) studies of the photogenerated radical pairs (RPs) show that above 150 K, when n = 2-5, the radical pair-intersystem crossing mechanism (RP-ISC) produces spin-correlated radical ion pairs having electron spin polarization patterns indicating that the spin-spin exchange interaction in the radical ion pair is positive, 2J > 0, and is temperature dependent. This temperature dependence is most likely due to structural changes of the p-phenylene bridge. Charge recombination in the RPs generates PTZ-Phn-3*PDI, which exhibits a spin-polarized signal similar to that observed in photosynthetic reaction-center proteins and some biomimetic systems. At temperatures below 150 K and/or at shorter donor-acceptor distances, e.g., when n = 1, PTZ-Phn-3*PDI is also formed from a competitive spin-orbit-intersystem crossing (SO-ISC) mechanism that is a result of direct charge recombination: 1(PTZ+*-Phn-PDI-*) --> PTZ-Phn-3*PDI. This SO-ISC mechanism requires the initial RP intermediate and depends strongly on the orientation of the molecular orbitals involved in the charge recombination as well as the magnitude of 2J.  相似文献   

16.
The dimeric, pentacopper(II)-substituted tungstosilicate [Cu(5)(OH)(4)(H(2)O)(2)(A-alpha-SiW(9)O(33))(2)](10)(-) (1) has been characterized by single-crystal X-ray diffraction, elemental analysis, IR, electrochemistry, magnetic measurements, electron paramagnetic resonance (EPR), and mass spectrometry (MS). Magnetization and high-field EPR measurements reveal that the pentameric copper core {Cu(5)(OH)(4)(H(2)O)(2)}(6+) of 1 exhibits strong antiferromagnetic interactions (J(a) = -51 +/- 6 cm(-)(1), J(b) = -104 +/- 1 cm(-)(1), and J(c) = -55 +/- 3 cm(-)(1)) resulting in a spin S(T) = (1)/(2) ground state. EPR data show that the unpaired electron spin density is localized on the spin-frustrated apical Cu(2+) ion with g(zz) = 2.4073 +/- 0.0005, g(yy) = 2.0672 +/- 0.0005, g(xx) = 2.0240 +/- 0.0005, and A(zz) = -340 +/- 20 MHz (-0.0113 cm(-)(1)). 1 can therefore be considered as a model system for a five-spin, electronically coupled, spin-frustrated system. Polyanion 1, which is stable over a wide pH domain (pH 1-7), was characterized by cyclic voltammetry (CV) in a pH 5 medium. Its CV was constituted by an initial two-step reduction of the Cu(2+) centers to Cu(0) through Cu(+), followed at more negative potential by the redox processes of the W centers. Controlled potential coulometry of 1 allows for the reduction of the five Cu(2+) centers, as seen by consumption of 10.05 +/- 0.05 electrons per molecule. Polyanion 1 triggers efficiently the electrocatalytic reduction of nitrate and nitrite, and it also catalyzes the reduction of N(2)O. To our knowledge, this is the first example of N(2)O catalytic reduction by a polyoxoanion. Fourier transform ion cyclotron resonance MS was used to unambiguously assign the molecular weight of the solution-phase species 1 and the oxidation states of the Cu atoms in the central {Cu(5)(OH)(4)(H(2)O)(2)}(6+) core. Infrared (IR) multiphoton dissociation MS/MS of 1 showed evidence of a condensation process similar to bronze formation at low irradiation intensity. Higher IR intensity resulted in the formation of stable fragments consistent with those previously observed in the solution chemistry of polyoxoanions.  相似文献   

17.
The bis-bidentate bridging function of gbha2- with N,O-/N,O- coordination was observed for the first time in the complex (mu-gbha)[Ru(III)(acac)2]2 (1). Density functional theory calculations of 1 yield a triplet ground state with a large (deltaE > 6000 cm(-1)) singlet-triplet gap. Intermolecular antiferromagnetic coupling was observed (J approximately -5.3 cm(-1)) for the solid. Complex 1 undergoes two one-electron reduction and two one-electron oxidation steps; the five redox forms [(mu-gbha)[Ru(acac)2]2]n (n = -2, -1, 0, +1, +2) were characterized by UV-vis-NIR spectroelectrochemistry (NIR = near infrared). The paramagnetic intermediates were also investigated by electron paramagnetic resonance (EPR) spectroscopy. The monoanion with a comproportionation constant K(c) of 2.7 x 10(8) does not exhibit an NIR band for a Ru(III)/Ru(II) mixed-valent situation; it is best described as a 1,4-diazabutadiene radical anion containing ligand gbha*3-, which binds two ruthenium(III) centers. A Ru(III)-type EPR spectrum with g1 = 2.27, g2 = 2.21, and g3 = 1.73 is observed as a result of antiferromagnetic coupling between one Ru(III) and the ligand radical. The EPR-active monocation (K(c) = 1.7 x 10(6)) exhibits a broad (deltanu(1/2) = 2600 cm(-1)) intervalence charge-transfer band at 1800 nm, indicating a valence-averaged (Ru3.5)2 formulation (class III) with a tendency toward class II (borderline situation).  相似文献   

18.
The serendipitous self-assembly of the complex [Mn(III)(2)Zn(II)(2)(Ph-sao)(2)(Ph-saoH)(4)(hmp)(2)] (1),whose magnetic core consists solely of two symmetry equivalent Mn(iii) ions linked by two symmetry equivalent -N-O- moieties, provides a relatively simple model complex with which to study the magneto-structural relationship in oxime-bridged Mn(III) cluster compounds. Dc magnetic susceptibility measurements reveal ferromagnetic (J = +2.2 cm(-1)) exchange resulting in an S = 4 ground state. Magnetisation measurements performed at low temperatures and high fields reveal the presence of significant anisotropy, with ac measurements confirming slow relaxation of the magnetisation and Single-Molecule Magnetism behaviour. Simulations of high field, high frequency EPR data reveal a single ion anisotropy, D((Mn(III))) = -3.83 cm(-1). DFT studies on a simplified model complex of 1 reveal a pronounced dependence of the exchange coupling on the relative twisting of the oxime moiety with respect to the metal ion positions, as suggested previously in more complicated [Mn(III)(3)] and [Mn(III)(6)] clusters.  相似文献   

19.
Three octahedral complexes containing a (cis-cyclam)iron(III) moiety and an O,N-coordinated o-iminobenzosemiquinonate pi radical anion have been synthesized and characterized by X-ray crystallography at 100 K: [Fe(cis-cyclam)(L(1-3)(ISQ))](PF(6))(2) (1-3), where (L(1-3)(ISQ)) represents the monoanionic pi radicals derived from one-electron oxidations of the respective dianion of o-imidophenolate(2-), L(1), 2-imido-4,6-di-tert-butylphenolate(2-), L(2), and N-phenyl-2-imido-4,6-di-tert-butylphenolate(2-), L(3). Compounds 1-3 possess an S(t) = 0 ground state, which is attained via strong intramolecular antiferromagnetic exchange coupling between a low-spin central ferric ion (S(Fe) = 1/2) and an o-imino-benzosemiquinonate(1-) pi radical (S(rad) = 1/2). Zero-field M?ssbauer spectra of 1-3 at 80 K confirm the low-spin ferric electron configuration: isomer shift delta = 0.26 mm s(-1) and quadrupole splitting DeltaE(Q) = 1.96 mm s(-1) for 1, 0.28 and 1.93 for 2, and 0.33 and 1.88 for 3. All three complexes undergo a reversible, one-electron reduction of the coordinated o-imino-benzosemiquinonate ligand, yielding an [Fe(III)(cis-cyclam)(L(1-3)(IP))](+) monocation. The monocations of 1 and 2 display very similar rhombic signals in the X-band EPR spectra (g = 2.15, 2.12, and 1.97), indicative of low-spin ferric species. In contast, the monocation of 3 contains a high-spin ferric center (S(Fe) = 5/2) as is deduced from its M?ssbauer and EPR spectra.  相似文献   

20.
The impact of donor-acceptor electronic coupling and bridge energetics on the preference for hole or electron transfer leading to charge recombination in a series of donor-bridge-acceptor (D-B-A) molecules was examined. In these systems, the donor is 3,5-dimethyl-4-(9-anthracenyl)-julolidine (DMJ-An) and acceptor is naphthalene-1,8:4,5-bis(dicarboximide) (NI), while the bridges are either oligo(p-phenyleneethynylene) (PE(n)P, where n = 1-3) 1-3 or oligo(2,7-fluorenone) (FN(n), where n = 1-3) 4-6. Photoexcitation of 1-3 and 4-6 produces DMJ(+?)-An-PE(n)P-NI(-?) and DMJ(+?)-An-FN(n)-NI(-?), respectively, which undergo radical pair intersystem crossing followed by charge recombination to yield both (3*)An and (3*)NI, which are observed by time-resolved electron paramagnetic resonance (TREPR) spectroscopy. (3*)NI is produced by hole transfer from DMJ(+?) to NI(-?), while (3*)An is produced by electron transfer from NI(-?) to DMJ(+?), using the agency of the bridge HOMOs and LUMOs, respectively. By monitoring the initial population of (3*)NI and (3*)An in 1-6, the data show that charge recombination occurs preferentially by selective hole transfer when the bridge is PE(n)P, while it occurs by preferential electron transfer when the bridge is FN(n). Over time, the initial population of (3*)NI decreases, while that of (3*)An increases, indicating that triplet-triplet energy transfer (TEnT) occurs. The observed distance dependence of TEnT from (3*)NI to An is weakly exponential with a decay parameter β = 0.08 ?(-1) for the PE(n)P series and β = 0.03 ?(-1) for the FN(n) series. In the PE(n)P series, this weak distance dependence is attributed to a transition from the superexchange regime to hopping transport as the energy gap for triplet energy injection onto the bridge becomes significantly smaller as n increases, while in the FN(n) series the corresponding energy gap is small for all n resulting in triplet energy transport by the hopping mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号