首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The CO(2)-capture performance of microporous coordination polymers of the M/DOBDC series (where M = Zn, Ni, Co, and Mg; DOBDC = 2,5-dioxidobenzene-1,4-dicarboxylate) was evaluated under flow-through conditions with dry surrogate flue gas (5/1 N(2)/CO(2)). The CO(2) capacities were found to track with static CO(2) sorption capacities at room temperature, with Mg/DOBDC demonstrating an exceptional capacity for CO(2) (23.6 wt %). The effect of humidity on the performance of Mg/DOBDC was investigated by collecting N(2)/CO(2)/H(2)O breakthrough curves at relative humidities (RHs) in the feed of 9, 36, and 70%. After exposure at 70% RH and subsequent thermal regeneration, only about 16% of the initial CO(2) capacity of Mg/DOBDC was recovered. However, in the case of Ni/DOBDC and Co/DOBDC, approximately 60 and 85%, respectively, of the initial capacities were recovered after the same treatment. These data indicate that although Mg/DOBDC has the highest capacity for CO(2), under the conditions used in this study, Co/DOBDC may be a more desirable material for deployment in CO(2) capture systems because of the added costs associated with flue gas dehumidification.  相似文献   

2.
We systematically investigate dynamic separation of Xe and Kr at room temperature using four representative porous materials (Cu-BTC, ZIF-8, COP-4 and activated carbon (AC)). Results indicate that among the four materials, Cu-BTC not only shows the highest retention volume per gram (Vg=788 mL g-1, which is 1.8 times of activated carbon (436 mL g-1)) under flowing condition, but also can separate 350 ppm Xe from 35 ppm Kr mixture in air with a high Xe/Kr selectivity of 8.6 at room temperature and 200 kPa, due to its suitable pore morphology, open metal sites, small side pockets in the framework. Moreover, the Cu-BTC also performs well on individual separation of Xe, Kr, CO2 from five-component gas mixture (Xe:Kr:CO2:Ar:N2=1:1:1:1:0.5, V/V) and has the longest retention time for Xe (20 min) in gas chromatographic separation, suggesting that it is a good candidate for potential applications as polymeric sieves.  相似文献   

3.
Mixed-matrix membranes (MMMs) were prepared by combinations of two different kinds of porous fillers [metal-organic frameworks (MOFs) HKUST-1 and ZIF-8, and zeolite silicalite-1] and polysulfone. In the search for filler synergy, the MMMs were applied to the separation of CO(2)/N(2), CO(2)/CH(4), O(2)/N(2), and H(2)/CH(4) mixtures and we found important selectivity improvements with the HKUST-1-silicalite-1 system (CO(2)/CH(4) and CO(2)/N(2) separation factors of 22.4 and 38.0 with CO(2) permeabilities of 8.9 and 8.4 Barrer, respectively).  相似文献   

4.
Metal-organic frameworks with unsaturated metal centers in their crystal structures, such as Ni/DOBDC and Mg/DOBDC, are promising adsorbents for carbon dioxide capture from flue gas due to their high CO(2) capacities at subatmospheric pressures. However, stability is a critical issue for their application. In this paper, the stabilities of Ni/DOBDC and Mg/DOBDC are investigated. Effects of steam conditioning, simulated flue gas conditioning, and long-term storage on CO(2) adsorption capacities are considered. Results show that Ni/DOBDC can maintain its CO(2) capacity after steam conditioning and long-term storage, whereas Mg/DOBDC does not. Nitrogen isotherms for Mg/DOBDC show a drop in surface area after steaming, corresponding to the decrease in CO(2) adsorption, which may be caused by a reduction of unsaturated metal centers in its structure. Conditioning with dry simulated flue gas at room temperature only slightly affects CO(2) adsorption in Ni/DOBDC. However, introducing water vapor into the simulated flue gas further reduces the CO(2) capacity of Ni/DOBDC.  相似文献   

5.
Metal-organic frameworks (MOFs) have attracted much attention as adsorbents for the separation of CO2 from flue gas or natural gas. Here, a typical metal-organic framework HKUST-I(also named Cu-BTC or MOF-199) was chemically reduced by doping it with alkali metals (Li, Na and K) and they were further used to investigate their CO2 adsorption capacities. The structural information, surface chemistry and thermal behavior of the prepared adsorbent samples were characterized by X-ray powder diffraction (XRD), thermo-gravimetric analysis (TGA) and nitrogen adsorption-desorption isotherm analysis. The results showed that the CO2 storage capacity of HKUST-1 doped with moderate quantities of Li+, Na+ and K+, individually, was greater than that of unmodified HKUST-1. The highest CO2 adsorption uptake of 8.64 mmol/g was obtained with 1K-HKUST-1, and it was ca. 11% increase in adsorption capacity at 298 K and 18 bar as compared with HKUST- 1. Moreover, adsorption tests showed that HKUST-1 and 1K-HKUST-1 displayed much higher adsorption capacities of CO2 than those of N2. Finally, the adsorption/desorption cycle experiment revealed that the adsorption performance of 1K-HKUST-1 was fairly stable, without obvious deterioration in the adsorption capacity of CO2 after 10 cycles.  相似文献   

6.
The synthesis, activation, and heats of CO(2) adsorption for the known members of the M(3)(BTC)(2) (HKUST-1) isostructural series (M = Cr, Fe, Ni, Zn, Ni, Cu, Mo) were investigated to gain insight into the impact of CO(2)-metal interactions for CO(2) storage/separation applications. With the use of modified syntheses and activation procedures, improved BET surface areas were obtained for M = Ni, Mo, and Ru. The zero-coverage isosteric heats of CO(2) adsorption were measured for the Cu, Cr, Ni, Mo, and Ru analogues and gave values consistent with those reported for MOFs containing coordinatively unsaturated metal sites, but lower than for amine functionalized materials. Notably, the Ni and Ru congeners exhibited the highest CO(2) affinities in the studied series. These behaviors were attributed to the presence of residual guest molecules in the case of Ni(3)(BTC)(2)(Me(2)NH)(2)(H(2)O) and the increased charge of the dimetal secondary building unit in [Ru(3)(BTC)(2)][BTC](0.5).  相似文献   

7.
Molecular modeling methods are used to estimate the influence of impurity species: water, O(2), and SO(2) in flue gas mixtures present in postcombustion CO(2) capture using a metal organic framework, HKUST-1, as a model sorbent material. Coordinated and uncoordinated water effects on CO(2) capture are analyzed. Increase of CO(2) adsorption is observed for both cases, which can be attributed to the enhanced binding energy between CO(2) and HKUST-1 due to the introduction of a small amount of water. Density functional theory calculations indicate that the binding energy between CO(2) and HKUST-1 with coordinated water is ~1 kcal/mol higher than that without coordinated water. It is found that the improvement of CO(2)/N(2) selectivity induced by coordinated water may mainly be attributed to the increased CO(2) adsorption on the hydrated HKUST-1. On the other hand, the enhanced selectivity induced by uncoordinated water in the flue gas mixture can be explained on the basis of the competition of adsorption sites between water and CO(2) (N(2)). At low pressures, a significant CO(2)/N(2) selectivity increase is due to the increase of CO(2) adsorption and decrease of N(2) adsorption as a consequence of competition of adsorption sites between water and N(2). However, with more water molecules adsorbed at higher pressures, the competition between water and CO(2) leads to the decrease of CO(2) adsorption capacity. Therefore, high pressure operation should be avoided in HKUST-1 sorbents for CO(2) capture. In addition, the effects of O(2) and SO(2) on CO(2) capture in HKUST-1 are investigated: The CO(2)/N(2) selectivity does not change much even with relatively high concentrations of O(2) in the flue gas (up to 8%). A slightly lower CO(2)/N(2) selectivity of a CO(2)/N(2)/H(2)O/SO(2) mixture is observed compared with that in a CO(2)/N(2)/H(2)O mixture, especially at high pressures, due to the strong SO(2) binding with HKUST-1.  相似文献   

8.
采用La2(CO3)3空气焙烧法制备了La2O2CO3载体、采用浸渍法制备了Ni,Fe不同比例的Ni-Fe双金属催化剂及Ni/La2O2CO3,Fe/La2 O2 CO3催化剂,考察了各催化剂从300~700℃催化乙醇水蒸气重整反应的性能,并用BET,XRD,TPR等技术对催化剂进行表征。结果表明,相对单一金属催化剂,Ni-Fe双金属催化剂均表现出更高的活性,这可能是因为高分散的Ni,Fe和LaFeyNi1-yO3的共存作用。其中Ni含量为10%,Fe含量为5%时的Ni-Fe/La2O2CO3表现出最高的活性,400℃时乙醇的转化率为100%,H2的选择性最高达到94.1%,而CO的选择性则低至1.2%。  相似文献   

9.
Collision-induced near-IR emission of O(2) a(1)Δ(g) was investigated in O(2)/M (M = Ar, Kr, Xe, N(2), or CO(2)) gas mixtures, where the total pressure ranged from 10 to 100 atm, and gaseous O(2) dimol was excited with a pulsed dye laser at 630 nm through the simultaneous two-electron transition to prepare O(2) in the a(1)Δ(g) state. The a(1)Δ(g) → X(3)Σ(g)(-) emission intensity around 1270 nm increased with the number density of foreign gas (M) under constant O(2) number density. Emission enhancement efficiencies were in the order Xe > CO(2) > O(2) > Kr > N(2) > Ar; they are controlled by collisional enhancement during the near-IR emission at 1270 nm but not during photoabsorption at 630 nm. Efficiencies were converted into bimolecular rate constants to enhance the radiative a → X transition for the added gases. The rate constants were estimated as quadratically dependent on the molar refraction (or polarizability) of collision gas. The self-quenching rate constant was determined from the Stern-Volmer plot of the emission lifetimes measured in pure O(2).  相似文献   

10.
Pd-Cu-Cl(x)/Al(2)O(3) catalysts were prepared by a NH(3) coordination-impregnation method and exhibited an excellent activity for low-temperature CO oxidation and 100% CO conversion was obtained at -30 °C for 400 ppm CO and 1000 ppm H(2)O/air.  相似文献   

11.
Remote sensing of CO(2) requires high-fidelity reference data of spectral line parameters to be successful. The 6360 cm(-1) region is commonly used by satellites, field campaigns, and point-source gas sensors because it contains well-characterized and relatively isolated transitions of appropriate line strengths for atmospheric applications. However, the presence of gases other than CO(2), N(2), and O(2) can be a source of uncertainty for atmospheric measurements. Near 6360 cm(-1), there are numerous H(2)O and HDO transitions. Water makes up approximately 1-4% of Earth's lower atmosphere and can interfere with remote sensing measurements by (1) appearing as a direct spectral interference or (2) acting as a foreign broadener for CO(2) lines. The primary goal of this work was to quantify H(2)O broadening of CO(2) through precision spectroscopy measurements on the R16e transition at 6359.967 cm(-1) and its two nearest neighbors. A secondary goal was to assess the accuracy of H(2)O reference line parameters in the HITRAN 2008 database for spectrally removing typical levels of moisture from air samples containing approximately 400 ppm of CO(2).  相似文献   

12.
建立利用气相色谱热导检测器分析气体激光器用氦中氧气、氮气、一氧化碳、二氧化碳及氙气混合气体标准物质的方法。试验比较了不同极性、不同类型的色谱柱,对柱箱温度、载气流量进行了优化,最终确定以HP–PLOT/分子筛色谱柱分离氧气、氮气、一氧化碳、氙气,柱箱温度保持40℃,以HP–PLOT Q柱分离二氧化碳,柱箱温度保持60℃,载气流量均为2 m L/min。在混合气体标准物质量值范围内,该分析方法测定结果的相对标准偏差不大于1%(n=6),对重量法配制得标准气体进行分析比对,测量误差不大于1%。  相似文献   

13.
载体对醇气相羰基化镍催化剂的影响   总被引:10,自引:0,他引:10  
载体对醇气相羰基化镍催化剂的影响彭峰冯景贤黄仲涛(华南理工大学化工学院化工系,广州510641)关键词催化剂,羰基化,载体,相互作用甲醇、乙醇的气相羰基化近二十年来引起了许多研究者的关注,在寻找一种廉价高效的非贵金属取代铑催化剂方面已取得了一定进展...  相似文献   

14.
Photodissociation of formyl fluoride (HCOF) is studied in Ar, Kr, and Xe matrixes at 248 and 193 nm excitation by following spectral changes in the infrared absorption spectra. In all matrixes, the main photodissociation products are CO/HF species, including CO-HF and OC-HF complexes and thermally unstable CO/HF species (a distorted CO/HF complex or a reaction intermediate), which indicate negligible cage exit of atoms produced via the C-F and C-H bond cleavage channels. However, the observation of traces of H, F, CO, CO(2), F(2)CO, FCO, and HRg(2)(+) (Rg = Kr or Xe) in Kr and Xe matrixes would imply some importance of other reaction channels too. The analysis of the decay curves of the precursor shows that dissociation efficiency of HCOF increases as Ar < Kr < Xe, the difference being the factor of 10 between Ar and Xe. Moreover, HCOF dissociates 20-50 times faster at 193 nm compared to 248 nm. Interestingly, whereas the CO/HF species are stable with respect to photolysis in Ar, they photobleach in Kr and Xe matrixes at 248 and 193 nm, even though the first excited states of CO and HF are not energetically accessible with 193 and 248 nm photons. In krypton matrix, the photodissociation of CO/HF species at 248 nm is observed to be a single photon process. Quantum chemical calculations of electronic excitation energies of CO-HF and OC-HF complexes show that the electronic states of HF and CO mostly retain their diatomic nature in the pair. This clearly demonstrates that photodissociation of CO/HF complexes is promoted by the surrounding rare gas lattice.  相似文献   

15.
Buffer-gas pressure broadening for the (3 0(0) 1)(III)<--(0 0 0) band of CO(2) in the 1600 nm region was investigated with continuous wave cavity ring-down spectroscopy within the temperature range 263-326 K. The measured absorption profiles were analyzed with Voigt functions. Pressure broadening coefficient, gamma(gas), and the temperature dependent parameter (broadening exponent), n, were determined for a variety of buffer gases: N(2), O(2), He, Ne, Ar, Kr and Xe. gamma(air) values estimated subsequently are 0.096(2) for R(0), 0.085(5) for P(8), 0.075(2) for P(16), 0.070(4) for P(26), and 0.069(2) for P(38) in units of cm(-1) atm(-1), where numbers in parentheses are one standard deviation in units of the last digits quoted. n(air) values are 0.77(4) for R(0), and 0.73(11) for P(8).  相似文献   

16.
The uptake and adsorption enthalpy of carbon dioxide at 0.2 bar have been studied in three different topical porous MOF samples, HKUST-1, UiO-66(Zr), and MIL-100(Fe), after having been pre-equilibrated under different relative humidities (3, 10, 20, 40%) of water vapor. If in the case of microporous UiO-66, CO(2) uptake remained similar whatever the relative humidity, and correlations were difficult for microporous HKUST-1 due to its relative instability toward water vapor. In the case of MIL-100(Fe), a remarkable 5-fold increase in CO(2) uptake was observed with increasing RH, up to 105 mg g(-1) CO(2) at 40% RH, in parallel with a large decrease in enthalpy measured. Cycling measurements show slight differences for the initial three cycles and complete reversibility with further cycles. These results suggest an enhanced solubility of CO(2) in the water-filled mesopores of MIL-100(Fe).  相似文献   

17.
The branching ratios and rate coefficients have been measured at 298 K for the reactions between CHCl2F, CHClF2, and CH2ClF and the following cations (with recombination energies in the range 6.3-21.6 eV); H3O+, SFx+ (x = 1-5), CFy+ (y = 1-3), NO+, NO2+, O2+, Xe+, N2O+, O+, CO2+, Kr+, CO+, N+, N2+, Ar+, F+, and Ne+. The majority of the reactions proceed at the calculated collisional rate, but the reagent ions SF3+, NO+, NO2+, and SF2+ do not react. Surprisingly, although all of the observed product channels are calculated to be endothermic, H3O+ does react with CHCl2F. On thermochemical grounds, Xe+ appears to react with these molecules only when it is in its higher-energy 2P1/2 spin-orbit state. In general, most of the reactions form products by dissociative charge transfer, but some of the reactions of CH2ClF with the lower-energy cations produce the parent cation in significant abundance. The branching ratios produced in this study and by threshold photoelectron-photoion coincidence spectroscopy agree reasonably well over the energy range 11-22 eV. In about one-fifth of the large number of reactions studied, the branching ratios are in excellent agreement and appreciable energy resonance between an excited state and the ground state of the ionized neutral exists, suggesting that these reactions proceed exclusively by a long-range charge-transfer mechanism. Upper limits for the enthalpy of formation at 298 K of SF4Cl (-637 kJ mol-1), SClF (-28 kJ mol-1), and SHF (-7 kJ mol-1) are determined.  相似文献   

18.
Two new metal-organic frameworks, M(2)(dobpdc) (M = Zn (1), Mg (2); dobpdc(4-) = 4,4'-dioxido-3,3'-biphenyldicarboxylate), adopting an expanded MOF-74 structure type, were synthesized via solvothermal and microwave methods. Coordinatively unsaturated Mg(2+) cations lining the 18.4-?-diameter channels of 2 were functionalized with N,N'-dimethylethylenediamine (mmen) to afford Mg(2)(dobpdc)(mmen)(1.6)(H(2)O)(0.4) (mmen-Mg(2)(dobpdc)). This compound displays an exceptional capacity for CO(2) adsorption at low pressures, taking up 2.0 mmol/g (8.1 wt %) at 0.39 mbar and 25 °C, conditions relevant to removal of CO(2) from air, and 3.14 mmol/g (12.1 wt %) at 0.15 bar and 40 °C, conditions relevant to CO(2) capture from flue gas. Dynamic gas adsorption/desorption cycling experiments demonstrate that mmen-Mg(2)(dobpdc) can be regenerated upon repeated exposures to simulated air and flue gas mixtures, with cycling capacities of 1.05 mmol/g (4.4 wt %) after 1 h of exposure to flowing 390 ppm CO(2) in simulated air at 25 °C and 2.52 mmol/g (9.9 wt %) after 15 min of exposure to flowing 15% CO(2) in N(2) at 40 °C. The purity of the CO(2) removed from dry air and flue gas in these processes was estimated to be 96% and 98%, respectively. As a flue gas adsorbent, the regeneration energy was estimated through differential scanning calorimetry experiments to be 2.34 MJ/kg CO(2) adsorbed. Overall, the performance characteristics of mmen-Mg(2)(dobpdc) indicate it to be an exceptional new adsorbent for CO(2) capture, comparing favorably with both amine-grafted silicas and aqueous amine solutions.  相似文献   

19.
陈莲芬  莫炜娴  刘秋仪  康健 《化学通报》2023,86(8):916-922,907
金属有机骨架材料(MOFs)作为异相催化剂受到了日益广泛的关注。在众多经典MOFs结构中,HKUST-1及其衍生材料是研究最多的类型之一。HKUST-1具有原料简单、易于合成、结构稳定、孔隙率高等多种优点,在异相催化领域中具有广阔的应用前景。已有多种HKUST-1相关材料被用作催化剂,包括HKUST-1本身、缺陷型结构、负载活性客体分子的复合型材料以及HKUST-1衍生的多孔碳纳米材料等。本文围绕HKUST-1作为催化剂的结构设计以及在不同催化反应中的应用展开总结与介绍,以期为相关MOFs材料的设计和催化研究提供一定参考。  相似文献   

20.
Two metallosynthons, namely (Et4N)2[Ni(NpPepS)] (1) and (Et4N)2[Ni(PhPepS)] (2) containing carboxamido-N and thiolato-S as donors have been used to model the bimetallic M(p)-Ni(d) subsite of the A-cluster of the enzyme acetyl coenzyme A synthase/CO dehydrogenase. A series of sulfur-bridged Ni/Cu dinuclear and trinuclear complexes (3-10) have been synthesized to explore their redox properties and affinity of the metal centers toward CO. The structures of (Et4N)2[Ni(PhPepS)] (2), (Et4N)[Cu(neo)Ni(NpPepS)] x 0.5 Et2O x 0.5 H2O (3 x 0.5 Et2O x 0.5 H2O), (Et4N)[Cu(neo)Ni(PhPepS)] x H2O (4 x H2O), (Et4N)2[Ni{Ni(NpPepS)}2] x DMF (5 x DMF), (Et4N)2[Ni(DMF)2{Ni(NpPepS)}2] x 3 DMF (6 x 3 DMF), (Et4N)2[Ni(DMF)2{Ni(PhPepS)}2] (8), and [Ni(dppe)Ni(PhPepS)] x CH2Cl2 (10 x CH2Cl2) have been determined by crystallography. The Ni(d) mimics 1 and 2 resist reduction and exhibit no affinity toward CO. In contrast, the sulfur-bridged Ni center (designated Ni(C)) in the trinuclear models 5-8 are amenable to reduction and binds CO in the Ni(I) state. Also, the sulfur-bridged Ni(C) center can be removed from the trimers (5-8) by treatment with 1,10-phenanthroline much like the "labile Ni" from the enzyme. The dinuclear Ni-Ni models 9 and 10 resemble the Ni(p)-Ni(d) subsite of the A-cluster more closely, and only the modeled Ni(p) site of the dimers can be reduced. The Ni(I)-Ni(II) species display EPR spectra typical of a Ni(I) center in distorted trigonal bipyramidal and distorted tetrahedral geometries for 9(red) and 10(red), respectively. Both species bind CO, and the CO-adducts 9(red)-CO and 10(red)-CO display strong nu(co) at 2044 and 1997 cm(-1), respectively. The reduction of 10 is reversible. The CO-affinity of 10 in the reduced state and the nu(co) value of 10(red)-CO closely resemble the CO-bound reduced A-cluster (nu(co) = 1996 cm(-1)).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号