首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 878 毫秒
1.
A new dark energy model called “ghost dark energy” was recently suggested to explain the observed accelerating expansion of the universe. This model originates from the Veneziano ghost of QCD. The dark energy density is proportional to Hubble parameter, ρ Λ = α H, where α is a constant of order \({\Lambda }^{3}_{QCD}\) and Λ Q C D ~ 100M e V is QCD mass scale. In this paper, we investigate about the stability of generalized QCD ghost dark energy model against perturbations in the anisotropic background. At first, the ghost dark energy model of the universe with spatial BI model with/without the interaction between dark matter and dark energy is discussed. In particular, the equation of state and the deceleration parameters and a differential equation governing the evolution of this dark energy model are obtained. Then, we use the squared sound speed \({v_{s}^{2}}\) the sign of which determines the stability of the model. We explore the stability of this model in the presence/absence of interaction between dark energy and dark matter in both flat and non-isotropic geometry. In conclusion, we find evidence that the ghost dark energy might can not lead to a stable universe favored by observations at the present time in BI universe.  相似文献   

2.
In this paper, we analyze cosmological consequences of the reconstructed generalized ghost pilgrim dark energy \({\mathcal {F}}(T,T_{\mathcal {G}})\) models in terms of redshift parameter z. For this purpose, we consider power-law scale factor, scale factor for two unified phases and intermediate scale factor. We discuss graphical behavior of the reconstructed models and examine their stability analysis. Also, we explore the behavior of equation of state as well as deceleration parameters and \(\omega _{\Lambda }-\omega _{\Lambda }^{'}\) as well as \(r-s\) planes. It is found that all models are stable for pilgrim dark energy parameter 2. The equation of state parameter satisfies the necessary condition for pilgrim dark energy phenomenon for all scale factors. All other cosmological parameters show great consistency with the current behavior of the universe.  相似文献   

3.
The new agegraphic Dark Energy (NADE) model (based on generalized uncertainty principle) interacting with Dark Matter (DM) is considered in this study via power-law form of the scale factor a(t). The equation of state (EoS) parameter ω G is observed to have a phantom-like behaviour. The stability of this model is investigated through the squared speed of sound $v_{s}^{2}$ . It is found that $v_{s}^{2}$ always stays at negative level. This indicates instability of the considered model. Moreover, validity of the generalized second law of thermodynamics has been investigated assuming that the apparent horizon is the enveloping horizon. It has been observed that the generalized second law is valid throughout the evolution of the universe.  相似文献   

4.
We investigate thermodynamics of viscous dark energy interacting with dark matter in a DGP braneworld. We show that the Friedmann equation in this setup can be rewritten as the first law of thermodynamics on the apparent horizon. We study the time evolution of the total entropy including the entropy of the matter fields inside the apparent horizon together with the entropy associated with the apparent horizon. Interestingly enough, we find that, in the presence of bulk viscosity, the generalized second law of thermodynamics is always preserved for both branches of the DGP braneworld. When the time varying gravitational constant is taken into account, the generalized second law of thermodynamics can be secured provided $\dot{G}_{4}<0$ , $\frac{\dot{G}_{5}}{G_{5}}>\frac{\dot{G}_{4}}{G_{4}}$ and $\omega_{de}>-1-u+\frac{3H\xi}{\rho_{de}}$ , where ξ and u are, respectively, the bulk viscosity coefficient and the energy densities ratio of the two dark components on the brane.  相似文献   

5.
In this paper, we consider the New Agegraphic Dark Energy (NADE) model interacting with pressureless Dark Matter (DM) in the framework of generalized uncertainty principle. We consider different expressions of the scale factor a(t) pertaining to the emergent, the intermediate and the logamediate scenarios of the universe. We have derived the expressions for various cosmological parameters in all the three cases and plotted the equation of state (EoS) parameter ω D and squared speed of the sound $v_{s}^{2}$ to check the stability of the model in each case. We have observed that for emergent and intermediate cases, the EoS parameter has a quintom-like behavior and in the logamediate case it has quintessence-like behavior. The negative squared speed of sound in all of the three cases has indicated that the model is classically unstable for each choice of scale factor.  相似文献   

6.
Dark energy model with the equation of state $p_{DE} =-\rho _{DE} -A\rho _{DE}^\alpha $ , is characterised by four finite life time future singularity of the universe for different values of the parameter $A$ and $\alpha $ [Nojiri et al. in Phys Rev D 71:063004, 2005]. Since from the matter dominated era to the dark energy dominated era the ratio of the dark energy density to the matter energy density increases as the universe expand for these future singularities, the universe passes through a significant time when the dark energy density and the matter energy density are nearly comparable. Considering $\frac{1}{r_0 }<r=\frac{\rho _{DE} }{\rho _M }<r_0 $ , where $r_0$ is any fixed ratio, we calculate the fraction of total life time of the universe when the universe passes through the coincidental stage for these singularities. It has been found that the fractional time varies as $\alpha $ varies within the range for which these finite life time future singularities occur and the fraction is smaller for smaller values of $r_0 $ . Importance of the fractional time and observational limits onto the values of the parameter $A$ and $\alpha $ has also been discussed.  相似文献   

7.
We study the polytropic gas scenario as the unification of dark matter and dark energy. We fit the model parameters by using the latest observational data including type Ia supernovae, baryon acoustic oscillation, cosmic microwave background, and Hubble parameter data. At 68.3 % and 95.4 % confidence levels, we find the best fit values of the model parameters as $\tilde{K}=0.742_{-0.024}^{+0.024}(1\sigma)_{-0.049}^{+0.048}(2\sigma)$ and $n=-1.05_{-0.08}^{+0.08}(1\sigma)_{-0.16}^{+0.15}(2\sigma)$ . Using the best fit values of the model, we obtain the evolutionary behaviors of the equation of state parameters of the polytropic gas model and dark energy, the deceleration parameter of the universe, the dimensionless density parameters of dark matter and dark energy as well as the growth factor of structure formation. Then, we investigate different energy conditions in the polytropic gas model and obtain that only the strong energy condition is violated for the special ranges of the redshift. We also conclude that in the this model, the universe starts from the matter dominated epoch and approaches a de Sitter phase at late times, as expected. Further, the universe begins to accelerate at redshift z t=0.74. Furthermore, in contrary to the ΛCDM model, the cosmic coincidence problem is solved naturally in the polytropic gas scenario. Moreover, this model fits the data of the growth factor well as the ΛCDM model.  相似文献   

8.
In this paper, an interacting dark energy model in a non-flat universe is studied, with taking interaction form $C=\alpha H\rho _{de}$ C = α H ρ d e . And in this study a property for the mysterious dark energy is aforehand assumed, i.e. its equation of state $w_{\Lambda }=-1$ w Λ = - 1 . After several derivations, a power-law form of dark energy density is obtained $\rho _{\Lambda } \propto a^{-\alpha }$ ρ Λ ∝ a - α , here $a$ a is the cosmic scale factor, $\alpha $ α is a constant parameter introducing to describe the interaction strength and the evolution of dark energy. By comparing with the current cosmic observations, the combined constraints on the parameter $\alpha $ α is investigated in a non-flat universe. For the used data they include: the Union2 data of type Ia supernova, the Hubble data at different redshifts including several new published datapoints, the baryon acoustic oscillation data, the cosmic microwave background data, and the observational data from cluster X-ray gas mass fraction. The constraint results on model parameters are $\Omega _{K}=0.0024\,(\pm 0.0053)^{+0.0052+0.0105}_{-0.0052-0.0103}, \alpha =-0.030\,(\pm 0.042)^{+0.041+0.079}_{-0.042-0.085}$ Ω K = 0.0024 ( ± 0.0053 ) - 0.0052 - 0.0103 + 0.0052 + 0.0105 , α = - 0.030 ( ± 0.042 ) - 0.042 - 0.085 + 0.041 + 0.079 and $\Omega _{0m}=0.282\,(\pm 0.011)^{+0.011+0.023}_{-0.011-0.022}$ Ω 0 m = 0.282 ( ± 0.011 ) - 0.011 - 0.022 + 0.011 + 0.023 . According to the constraint results, it is shown that small constraint values of $\alpha $ α indicate that the strength of interaction is weak, and at $1\sigma $ 1 σ confidence level the non-interacting cosmological constant model can not be excluded.  相似文献   

9.
In this paper, we test the spherical collapse of a viscous unified dark fluid (VUDF) which has constant adiabatic sound speed and show the nonlinear collapse for VUDF, baryons, and dark matter, which are important in forming the large-scale structure of our Universe. By varying the values of the model parameters $\alpha $ and $\zeta _{0}$ , we discuss their effects on the nonlinear collapse of the VUDF model, and we compare its result to the $\Lambda $ CDM model. The results of the analysis show that, within the spherical top-hat collapse framework, larger values of $\alpha $ and smaller values of $\zeta _{0}$ make the structure formation earlier and faster, and the other collapse curves are almost distinguished with the curve of $\Lambda $ CDM model if the bulk viscosity coefficient $\zeta _{0}$ is less than $10^{-3}$ .  相似文献   

10.
It is shown that among the \(R+\beta S^{abc}S_{abc}\) models, only the one with \(\beta =1/2\) has nonvanishing torsion effect in the Robertson–Walker universe filled with a spin fluid, where \(S_{abc}\) denotes torsion. Moreover, the torsion effect in that model is found to be able to replace the big-bang singularity by a big bounce. Furthermore, we find that the model can be obtained under a Kaluza–Klein-like ansatz, by assuming that the gravitational gauge group is the de Sitter group.  相似文献   

11.
A modified generalized Chaplygin gas (MGCG) is considered as the unified dark matter–dark energy revisited. The character of MGCG is endued with the dual role, which behaves as matter at early times and as a quiessence dark energy at late times. The equation of state for MGCG is p?=???αρ/(1?+?α)????(z)ρ ???α /(1?+?α) , where $\vartheta(z)=-[\,\rho_{\,\rm 0c}(1+z)^{3}]\,^{(1+\alpha)}(1-\Omega_{\,\rm 0B})^{\alpha}\{\alpha\Omega_{\,\rm 0DM}+ \Omega_{\,\rm 0DE}[\,\omega_{\,\rm DE}+\alpha(1+\omega_{\rm DE})](1+z)^{3\omega_{\rm DE}(1+\alpha)}\}$ . Some cosmological quantities, such as the densities of different components of the universe Ω i (i, respectively, denotes baryons, dark matter, and dark energy) and the deceleration parameter q, are obtained. The present deceleration parameter q 0, the transition redshift z T, and the redshift z eq, which describes the epoch when the densities in dark matter and dark energy are equal, are also calculated. To distinguish MGCG from others, we then apply the Statefinder diagnostic. Later on, the parameters (α and ω DE) of MGCG are constrained by combination of the sound speed $c^{2}_{\rm s}$ , the age of the universe t 0, the growth factor m, and the bias parameter b. It yields $\alpha=-3.07^{+5.66}_{-4.98}\times10^{-2}$ and $\omega_{\rm DE}=-1.05^{+0.06}_{-0.11}$ . Through the analysis of the growth of density perturbations for MGCG, it is found that the energy will transfer from dark matter to dark energy which reach equal at z eq~0.48 and the density fluctuations start deviating from the linear behavior at z~0.25 caused by the dominance of dark energy.  相似文献   

12.
The model of holographic dark energy in which dark energy interacts with dark matter is investigated in this paper. In particular, we consider the interacting holographic dark energy model in the context of a perturbed universe, which was never investigated in the literature. To avoid the large-scale instability problem in the interacting dark energy cosmology, we employ the generalized version of the parameterized post-Friedmann approach to treating the dark energy perturbations in the model. We use the current observational data to constrain the model. Since the cosmological perturbations are considered in the model, we can then employ the redshift-space distortions (RSD) measurements to constrain the model, in addition to the use of the measurements of expansion history, which has never been done in the literature. We find that, for both the cases with \(Q=\beta H\rho _\mathrm{c}\) and with \(Q=\beta H_0\rho _\mathrm{c}\), the interacting holographic dark energy model is more favored by the current data, compared to the holographic dark energy model without interaction. It is also found that, with the help of the RSD data, a positive coupling \(\beta \) can be detected at the \(2.95\sigma \) statistical significance for the case of \(Q=\beta H_0\rho _\mathrm{c}\).  相似文献   

13.
In this work, we discussed a new dark energy density model which contains one term proportional to the Hubble parameter H squared, one to the first and one to second time derivative of the Hubble parameter H based on El-Nabulsi fractional action cosmology (FAC). Some cosmological parameters, like the Hubble parameter, the Equation of State (EoS) parameter ω DE and the deceleration parameter q have been reconstructed and studied. Finally, through a test made using the squared speed of sound $v_{s}^{2}$ , the proposed reconstruction model results to be classically unstable.  相似文献   

14.
A spatially homogeneous and anisotropic locally rotationally symmetric (LRS) Bianchi type-I Universe filled with matter and generalized ghost pilgrim dark energy (GGPDE) has been studied in general theory of relativity. To obtain determinate solution of the field equations we have used scalar expansion proportional to the shear scalar which leads to a relation between the metric potentials. Some well-known cosmological parameters (equation of state (EoS) parameter (ω Λ), deceleration parameter (q) and squared speed of sound \({v_{s}^{2}}\)) and planes (\(\omega _{\Lambda }-\dot {\omega }_{\Lambda }\) and statefinder) are constructed for obtained model. The discussion and significance of these parameters is totally done through pilgrim dark energy parameter (β) and cosmic time (t).  相似文献   

15.
Let $\mathcal{B}(\mathcal{H})$ be the set of all bounded linear operators on the separable Hilbert space  $\mathcal{H}$ . A (generalized) quantum operation is a bounded linear operator defined on  $\mathcal{B}(\mathcal{H})$ , which has the form $\varPhi_{\mathcal{A}}(X)=\sum_{i=1}^{\infty}A_{i}XA_{i}^{*}$ , where $A_{i}\in\mathcal{B}(\mathcal{H})$ (i=1,2,…) satisfy $\sum_{i=1}^{\infty}A_{i}A_{i}^{*}\leq \nobreak I$ in the strong operator topology. In this paper, we establish the relationship between the (generalized) quantum operation $\varPhi_{\mathcal{A}}$ and its dual $\varPhi_{\mathcal {A}}^{\dag}$ with respect to the set of fixed points and the noiseless subspace. In particular, we also partially characterize the extreme points of the set of all (generalized) quantum operations and give some equivalent conditions for the correctable quantum channel.  相似文献   

16.
In this paper, the structure formation theories for the modified Chaplygin gas (MCG) model are established in the linear and non-linear regimes. Concretely, for the linear regime, the evolutions of the growth index $f$ and the growth variable $T$ are illustrated for the interacting MCG (IMCG) model and MCG model without interaction between dark energy and dark matter, which can give reasonable predictions for structure formation. While for the non-linear regime, by supposing the homogeneity and conservation of dark energy when the system reaches virialization, we can point out that MCG reaches the state of turn around later than GCG, the value of the collapse factor in MCG model is bigger than the fiducial value 0.5 in Einstein-de Sitter universe, namely $\eta >0.5$ , because of the effective repulsive force of dark energy, and the density contrast of the virialization tends to the Einstein-de Sitter value $18\pi ^{2}$ . Furthermore, the evolutions of the cluster number counts in LCDM, GCG and MCG models without and with interaction between dark energy and dark matter are illustrated by extending the Press-Schechter framework, which can exhibit the differences among the three models.  相似文献   

17.
18.
19.
We consider deep inelastic scattering off nuclei in the Regge limit within the Glauber–Gribov model. Using unitarized parton distribution functions for the proton, we find sizeable shadowing effects on the nuclear total and longitudinal structure functions, $F_{2}^{A}$ and $F_{L}^{A}$ , in the low-x limit. Extending a fan-diagram analysis for the large-mass region of coherent diffraction off nuclei to high Q 2, we also find significant shadowing effects in this kinematical regime. Finally, we discuss the shortcomings of our approach and possible extensions of the model to other kinematical regimes.  相似文献   

20.
Recently we proposed a novel approach to the formulation of relativistic dissipative hydrodynamics by extending the so-called matching conditions in the Eckart frame (Phys. Rev. C 85, 14906 (2012)). We extend this formalism further to the arbitrary local rest frame. We discuss the stability and causality of solutions of fluid equations which are obtained by applying this formulation to the Landau-Lifshitz frame, which is more relevant to treat the fluid produced in ultra-relativistic heavy-ion collisions. We derive equations of motion for a relativistic dissipative fluid with zero baryon chemical potential and show that linearized equations obtained from them are stable against small perturbations. It is found that conditions for a fluid to be stable against infinitesimal perturbations are equivalent to imposing restrictions that the sound wave, $c_{s}$ , propagating in the fluid, must not exceed the speed of light c, i.e., $c_{s} < c$ . This conclusion is equivalent to that obtained in the previous paper using the Eckart frame (Phys. Rev. C 85, 14906 (2012)).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号