首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The results of a numerical investigation of the process of oil displacement in a stratified inhomogeneous formation on the basis of the two-phase flow model with account for capillary forces are presented. It is shown that in many cases the vertical inhomogeneity of oil reservoirs may not be a cause of nonuniform displacement and the non-recovery of large oil reserves by the time of water breakthrough to the extraction surface. The action of the capillary forces is an additional factor leading to equalization of the water propagation front in the inhomogeneous formation, water breakthrough delay, and intensification of the mass transfer between the layers with different permeabilities. Analysis of the contribution of the interlayer flows to the water flooding of low-permeability formation intervals calls into question the practicability of blocking high-permeability inclusions in the neighborhood of pumping wells.  相似文献   

2.
In this article, the numerical simulations for one-dimensional three-phase flows in fractured porous media are implemented. The simulation results show that oil displacement in matrix is dominated by oil–water capillary pressure only under certain conditions. When conditions are changed to decrease the amount of water entering into the fractured media from the boundary of the flow field, water in fracture may be vaporized to superheated steam. In these cases, the appearance of superheated steam in fracture rather than in matrix will decrease the fracture pressure and generate the pressure difference between matrix and fracture, which results in oil flowing from matrix to fracture. Assuming that oil is wetting to steam, the matrix steam–oil capillary pressure will decrease the matrix oil-phase pressure as the matrix steam saturation increases. After the steam–oil capillary pressure finally exceeds the pressure difference due to the appearance of superheated steam in fracture, the oil displacement in matrix will stop. It is also shown that variations of the water relative permeability curve in matrix do not result in different mechanisms for oil displacement in matrix. The simulation results suggest that the amount of liquid water supply from the boundary of flow field fundamentally influence the mechanisms for oil displacement in matrix.  相似文献   

3.
The approach to residual oil saturation during the immiscible displacement of oil as predicted by the multiphase Darcy equations is studied. It is well known that when the capillary pressure term is neglected, one arrives at the Buckley-Leverett formulation according to which the inlet face attains residual oil saturation instantaneously. This result may, however, be strongly influenced by the inclusion of the capillary pressure term. In this paper it is shown that when the relative permeability and capillary pressure functions have power law dependencies on the saturation deviation from residual oil condition, the long time solution exhibits a power law decay toward residual saturation. Moreover, the power law decay solution is found to be unique and independent of the initial condition. The relationship of this solution to the classical Buckley-Leverett result is shown. Finally, generalization to the time varying flow rate case is addressed. As a verification of the theoretical conjectures, the power law solution is compared with direct numerical simulation of the two phase flow equations.  相似文献   

4.
When regions of three-phase flow arise in an oil reservoir, each of the flow parameters, i.e. capillary pressures and relative permeabilities, are generally functions of two phase saturations and depend on the wettability state. The idea of this work is to generate consistent pore-scale based three-phase capillary pressures and relative permeabilities. These are then used as input to a 1-D continuum core- or reservoir-scale simulator. The pore-scale model comprises a bundle of cylindrical capillary tubes, which has a distribution of radii and a prescribed wettability state. Contrary to a full pore-network model, the bundle model allows us to obtain the flow functions for the saturations produced at the continuum-scale iteratively. Hence, the complex dependencies of relative permeability and capillary pressure on saturation are directly taken care of. Simulations of gas injection are performed for different initial water and oil saturations, with and without capillary pressures, to demonstrate how the wettability state, incorporated in the pore-scale based flow functions, affects the continuum-scale displacement patterns and saturation profiles. In general, wettability has a major impact on the displacements, even when capillary pressure is suppressed. Moreover, displacement paths produced at the pore-scale and at the continuum-scale models are similar, but they never completely coincide.  相似文献   

5.
This article presents a mathematical model describing flow of two fluid phases in a heterogeneous porous medium. The medium contains disconnected inclusions embedded in the background material. The background material is characterized by higher value of the non-wetting-phase entry pressure than the inclusions, which causes non-standard behavior of the medium at the macroscopic scale. During the displacement of the non-wetting fluid by the wetting one, some portions of the non-wetting fluid become trapped in the inclusions. On the other hand, if the medium is initially saturated with the wetting phase, it starts to drain only after the capillary pressure exceeds the entry pressure of the background material. These effects cannot be represented by standard upscaling approaches based on the assumption of local equilibrium of the capillary pressure. We propose a relevant modification of the upscaled model obtained by asymptotic homogenization. The modification concerns the form of flow equations and the calculation of the effective hydraulic functions. This approach is illustrated with two numerical examples concerning oil–water and CO2–brine flow, respectively.  相似文献   

6.
The analytical equations for calculating two-phase flow, including local capillary pressures, are developed for the bundle of parallel capillary tubes model. The flow equations that are derived were used to calculate dynamic immiscible displacements of oil by water under the constraint of a constant overall pressure drop across the tube bundle. Expressions for averaged fluid pressure gradients and total flow rates are developed, and relative permeabilities are calculated directly from the two-phase form of Darcy's law. The effects of pressure drop and viscosity ratio on the relative permeabilities are discussed. Capillary pressure as a function of water saturation was delineated for several cases and compared to a steady-state mercury-injection drainage type of capillary pressure profile. The bundle of serial tubes model (a model containing tubes whose diameters change randomly at periodic intervals along the direction of flow), including local Young-Laplace capillary pressures, was analyzed with respect to obtaining relative permeabilities and macroscopic capillary pressures. Relative permeabilities for the bundle of parallel tubes model were seen to be significantly affected by altering the overall pressure drop and the viscosity ratio; relative permeabilities for the bundle of serial tubes were seen to be relatively insensitive to viscosity ratio and pressure, and were consistently X-like in profile. This work also considers the standard Leverett (1941) type of capillary pressure versus saturation profile, where drainage of a wetting phase is completed in a step-wise steady fashion; it was delineated for both tube bundle models. Although the expected increase in capillary pressure at low wetting-phase saturation was produced, comparison of the primary-drainage capillary pressure curves with the pseudo-capillary pressure profiles, that are computed directly using the averaged pressures during the displacements, revealed inconsistencies between the two definitions of capillary pressure.  相似文献   

7.
The pore and pore-throat sizes of shale and tight rock formations are on the order of tens of nanometers. The fluid flow in such small pores is significantly affected by walls of pores and pore-throats. This boundary layer effect on fluid flow in tight rocks has been investigated through laboratory work on capillary tubes. It is observed that low permeability is associated with large boundary layer effect on fluid flow. The experimental results from a single capillary tube are extended to a bundle of tubes and finally to porous media of tight formations. A physics-based, non-Darcy low-velocity flow equation is derived to account for the boundary layer effect of tight reservoirs by adding a non-Darcy coefficient term. This non-Darcy equation describes the fluid flow more accurately for tight oil reservoir with low production rate and low pressure gradient. Both analytical and numerical solutions are obtained for the new non-Darcy flow model. First, a Buckley–Leverett-type analytical solution is derived with this non-Darcy flow equation. Then, a numerical model has been developed for implementing this non-Darcy flow model for accurate simulation of multidimensional porous and fractured tight oil reservoirs. Finally, the numerical studies on an actual field example in China demonstrate the non-negligible effect of boundary layer on fluid flow in tight formations.  相似文献   

8.
An experimental investigation was carried out on mobilization and very slow flow of oil slugs in a capillary tube. The pressure drop of the slug flow was measured at every stage of mobilizing and moving the oil slugs as a function of capillary number in the range of 4 × 10−7–6 × 10−6. The pressure drop across the oil slug experienced three stages: build-up, hold-up, and steady stages. During the build-up stage, the convex rear end of the slug was becoming concave into the oil slug and the convex front end of the slug moved ahead to form a new portion of the slug. At the hold-up stage, both the concave rear end and the front end continued to advance, and the initial contact line of the oil slug with the tube wall through a very thin water film was being shortened. At this stage, the pressure drop reached a maximum value and remained nearly constant. At the steady stage, after the oil slug was completely mobilized out of the original contact region, the differential pressure had a step-drop first, and then the oil slug flowed at a lower differential pressure depending on the flow rate. Numerous slug flow tests of this study showed that the hold-up pressure drop was always higher than the steady stage pressure drop. Results also showed that the measured extra pressure drop was significantly high compared to the pressure drop calculated from Poiseuille equation, which is still commonly used in network modeling of multiphase flow in porous media.  相似文献   

9.
Models of the residual oil saturation and models of its effect on the flow in injection wells are proposed. The threshold nature of the dependence of the residual oil saturation on the capillary number determines a change in the flow regimes in the neighborhood of the injection well. The cases of pure, contaminated, and compressible reservoirs are considered. The dependences of the basic problem parameters on the displacement conditions and the state of the reservoir are obtained, together with formulas for the pressure distribution and well injectivity. The topicality of such a simulation for field calculations is demonstrated.  相似文献   

10.
In the previous work presented in Part I (Theoret. Appl. Fracture Mech. 18, 89–102 (1993)), hydraulic fracture in an infinitely large saturated porous medium is analyzed under an assumption of one-phase flow in the medium. The investigation is extended in this paper to the case of a two phase saturated immiscible flow of oil and water in the porous medium. The medium is initially saturated with oil. Flow in the medium is induced by diffusion of water injected into the fracture. The quasi-static growth of the fracture for a prescribed injection rate is analyzed based on the assumptions that the pressure in the fracture is uniform and that the permeating flow in the medium is unidirectional. The constant fracture toughness criterion for plane strain deformation is employed and the effect of capillary pressure is neglected. Empirical formulas are used for the permeabilities of the oil and water phases. It is seen that the distributions of water saturation and pore pressure in the medium are governed by two nonlinear partial differential equations. Numerical solutions are obtained by a finite difference scheme with iterations. It is found that the injected water is restricted within a layer near the surface of the fracture whose thickness is small compared with the length of the fracture. Thus the flow in the medium is governed essentially by the oil phase. To compare our problem with the corresponding problem of one-phase flow, we find that the difference in crack growth in these two problems is small for the ration of kinematic viscosities of the oil and water phases within the practical range. Hence our study confirms the validity of the one phase flow assumption used in the previous work for prediction of hydraulic fracture growth.  相似文献   

11.
Heterogeneous water-air mixture flows in the presence of capillary forces are investigated. It is shown that for moderate pressure and temperature gradients the distribution of the water saturation function can be determined from a nonlinear differential equation with a coefficient dependent on the porous medium parameters, the water viscosity, and the capillary pressure. The water-air mixture flow behind the ice melting front is considered.  相似文献   

12.
Fractures serve as primary conduits having a great impact on the migration of injected fluid into fractured permeable media. Appropriate transport properties such as relative permeability and capillary pressure are essential for successful simulation and prediction of multi-phase flow in such systems. However, the lack of a thorough understanding of the dynamics governing immiscible displacement in fractured media, limits our ability to properly represent their macroscopic transport properties. Previous experimental observations of imbibition front evolution in fractured rocks are examined in the present study using an automated history-matching approach to obtain representative relative permeability and capillary pressure curves. Predicted imbibition front evolution under different flow conditions resulted in an excellent agreement with experimental observations. Sensitivity analyses, in combination with direct experimental observation, allowed exploring the competing effects of relative permeability and capillary pressure on the development of saturation distribution and imbibing front evolution in fractured porous media. Results show that residual saturations are most sensitive to matrix relative permeability to oil, while the ratio of oil and water relative permeability, rock heterogeneity, boundary condition, and matrix–fracture capillary pressure contrast, affect displacement shape, speed, and geometry of the imbibing front.  相似文献   

13.
The motion of gas inclusions in a liquid-filled duct under the action of vibration for comparable cross-sectional dimensions of the inclusion and the duct is studied. Two limiting cases of inclusion motion differing with respect to the drag mechanism are considered. For low velocities, it is assumed that the drag is mainly determined by the capillary forces and the friction in the liquid film separating the gas inclusion from the duct wall. As the inclusion velocity increases, the main contribution to the drag is made by such mechanisms as flow separation, the formation of a low-pressure region in the wake, etc. It is demonstrated that due to the vibration a gas inclusion traveling in a capillary under the action of steady forces is halted at certain points of the capillary. The capillary behaves like a filter, impermeable for inclusions smaller than a certain threshold size. Moscow. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 3, pp. 85–92, May–June, 1998. The work received financial support from the Russian Foundation for Basic Research (project No.96-01-01813).  相似文献   

14.
We present a pore-scale network model of two- and three-phase flow in disordered porous media. The model reads three-dimensional pore networks representing the pore space in different porous materials. It simulates wide range of two- and three-phase pore-scale displacements in porous media with mixed-wet wettability. The networks are composed of pores and throats with circular and angular cross sections. The model allows the presence of multiple phases in each angular pore. It uses Helmholtz free energy balance and Mayer–Stowe–Princen (MSP) method to compute threshold capillary pressures for two- and three-phase displacements (fluid configuration changes) based on pore wettability, pore geometry, interfacial tension, and initial pore fluid occupancy. In particular, it generates thermodynamically consistent threshold capillary pressures for wetting and spreading fluid layers resulting from different displacement events. Threshold capillary pressure equations are presented for various possible fluid configuration changes. By solving the equations for the most favorable displacements, we show how threshold capillary pressures and final fluid configurations may vary with wettability, shape factor, and the maximum capillary pressure reached during preceding displacement processes. A new cusp pore fluid configuration is introduced to handle the connectivity of the intermediate wetting phase at low saturations and to improve model’s predictive capabilities. Based on energy balance and geometric equations, we show that, for instance, a gas-to-oil piston-like displacement in an angular pore can result in a pore fluid configuration with no oil, with oil layers, or with oil cusps. Oil layers can then collapse to form cusps. Cusps can shrink and disappear leaving no oil behind. Different displacement mechanisms for layer and cusp formation and collapse based on the MSP analysis are implemented in the model. We introduce four different layer collapse rules. A selected collapse rule may generate different corner configuration depending on fluid occupancies of the neighboring elements and capillary pressures. A new methodology based on the MSP method is introduced to handle newly created gas/water interfaces that eliminates inconsistencies in relation between capillary pressures and pore fluid occupancies. Minimization of Helmholtz free energy for each relevant displacement enables the model to accurately determine the most favorable displacement, and hence, improve its predictive capabilities for relative permeabilities, capillary pressures, and residual saturations. The results indicate that absence of oil cusps and the previously used geometric criterion for the collapse of oil layers could yield lower residual oil saturations than the experimentally measured values in two- and three-phase systems.  相似文献   

15.
Recovery of oil from the blocks of an initially oil-wet, naturally fractured, reservoir as a result of counter-current flow following introduction of aqueous wettability-altering surfactant into the fracture system is considered, as an example of a practical process in which phenomena acting at the single pore-scale are vital to the economic displacement of oil at the macroscopic scale. A Darcy model for the process is set up, and solutions computed illustrating the recovery rate controlling role of the bulk diffusion of surfactant. A central ingredient of this model is the capillary pressure relation, linking the local values of the pressure difference between the oleic and aqueous phases, the aqueous saturation and the surfactant concentration. Using ideas from single capillary models of oil displacement from oil-wet tubes by wettability-altering surfactant, we speculate that the use of a capillary pressure function, with dependences as assumed, may not adequately represent the Darcy scale consequences of processes acting at the single pore-scale. Multi-scale simulation, resolving both sub-pore and multi-pore flow processes may be necessary to resolve this point. Some general comments are made concerning the issues faced when modelling complex displacement processes in porous media starting from the pore-scale and working upwards.  相似文献   

16.

Capillary dominated flow or imbibition—whether spontaneous or forced—is an important physical phenomena in understanding the behavior of naturally fractured water-driven reservoirs (NFR’s). When the water flows through the fractures, it imbibes into the matrix and pushes the oil out of the pores due to the difference in the capillary pressure. In this paper, we focus on modeling and quantifying the oil recovered from NFR’s through the imbibition processes using a novel fully implicit mimetic finite difference (MFD) approach coupled with discrete fracture/discrete matrix (DFDM) technique. The investigation is carried out in the light of different wetting states of the porous media (i.e., varying capillary pressure curves) and a full tensor representation of the permeability. The produced results proved the MFD to be robust in preserving the physics of the problem, and accurately mapping the flow path in the investigated domains. The wetting state of the rock affects greatly the oil recovery factors along with the orientation of the fractures and the principal direction of the permeability tensor. We can conclude that our novel MFD method can handle the fluid flow problems in discrete-fractured reservoirs. Future works will be focused on the extension of MFD method to more complex multi-physics simulations.

  相似文献   

17.
A chemical flood model for a three-component (petroleum, water, injected chemical) two-phase (aqueous, oleic) system is presented. It is ruled by a system of nonlinear partial differential equations: the continuity equation for the transport of each of its components and Darcy's equation for the two-phase flow. The transport mechanisms considered are ultralow interfacial tension, capillary pressure, dispersion, adsorption, and partition of the components between the fluid phases (including solubilization and swelling).The mathematical model is numerically solved in the one-dimensional case by finite differences using an explicit and direct iterative procedure for the discretization of the conservation equations. Numerical results are compared with Yortsos and Fokas' exact solution for the linear waterflood case including capillary pressure effects and with Larson's model for surfactant flooding. The effects of the above-mentioned transport mechanisms on concentration profiles and on oil recovery are also analyzed.  相似文献   

18.
认识双重多孔介质中油水两相微观渗流机制是回答形成什么类型的裂隙网络可提高油藏采收率的关键. 微裂隙的分布可以提高多孔介质的绝对渗透率,但对于基质孔隙中的流体介质,微裂隙的存在会引起多孔介质中局部流体压力和流场的变化,导致局部流动以微裂隙流动为主,甚至出现窜流现象,降低驱油效率. 本文基于孔与裂隙双重网络模型,在网络进口设定两条平行等长且具有一定间隔的微裂隙,分析微裂隙的相对间隔(微裂隙之间距离/喉道长度)和微裂隙相对长度(微裂隙长度/喉道长度)对于微观渗流特征的影响. 结果表明:随微裂隙相对长度的增加,出现驱油效率逐渐降低,相对渗透率曲线中的油水共渗区水饱和度和等渗点增加,油水两相的共渗范围减小等现象;随着微裂隙之间相对间隔增大,周围越来越多的基质孔穴间的压力差减小,在毛管压力的限制下,驱替相绕过这些区域,而导致水窜现象.   相似文献   

19.
We study the stability of flow in a heated capillary tube with an evaporating meniscus. The behavior of the vapor/liquid system, which undergoes small perturbations, is analyzed by linear approximation, in the frame of a one-dimensional model of capillary flow, with a distinct interface. The effect of the physical properties of both phases, the wall heat flux and the capillary sizes, on the flow stability is studied. The velocity, pressure and temperature oscillations in a capillary tube with a constant wall heat flux or a constant wall temperature are determined. A scenario of a possible process at small and moderate Peclet numbers corresponding to the flow in capillaries is considered. The boundaries of stability, subdividing the domains of stable and unstable flows, are outlined, and the values of geometrical and operating parameters corresponding to the transition from stable to unstable flow are estimated. It is shown that the stable capillary flow occurs at relatively small wall heat fluxes, whereas at high ones, the flow is unstable, with continuously growing velocity, pressure and temperature oscillations.  相似文献   

20.
Fluid displacement in porous media plays an important role in many industrial applications, including biological filtration, carbon capture and storage, enhanced oil recovery, and fluid transport in fuel cells. The displacement front is unstable, which evolves from smooth into ramified patterns, when the mobility (ratio of permeability to viscosity) of the displacing fluid is larger than that of the displaced one; this phenomenon is called viscous fingering. Viscous fingering increases the residual saturation of the displaced fluid, considerably impairing the efficacy of fluid displacement. It is of practical importance to develop suitable methods to improve fluid displacement. This paper presents an experimental study on applying the discontinuity of capillary pressure to improve immiscible fluid displacement in drainage for which the displacing fluid (air) wets the porous media less preferentially than does the displaced fluid (silicone oil). The concept involves using a heterogeneous packing system, where the upstream region features large pores and small capillary pressure, and the downstream region features small pores and large capillary pressure. The increase in capillary pressure prevents fingering from directly crossing the media interface, thus enhancing the displacement. The experimental apparatus was a linear cell comprising porous media between two parallel plates, and glass beads of 0.6 and 0.125 mm diameter were packed to compose the heterogeneous porous media. The time history of the finger flow was recorded using a video camera. Pressure drops over the model from the inlet to the outlet were measured to compare viscous pressure drops with capillary pressures. The results show that the fluid displacement was increased by the capillary discontinuities. The optimal displacement was determined through linear regression by adjusting the relative length of the large- and small-pore region. The results may assist in the understanding of fingering flow across the boundaries of different grain-sized bands for the gas and oil reservoir management, such as setting the relative location of the injection and production wells. The findings may also serve as a reference for industrial applications such as placing the grain bands in an adequate series to improve the displacement efficacy in biological filtration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号