首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of fire-extinguishing agents CF3Br and C2HF5 on the structure and extinguishing processes of microgravity cup-burner flames have been studied numerically. Propane and a propane–ethanol–water fuel mixture, prescribed for a Federal Aviation Administration (FAA) aerosol can explosion simulator test, were used as the fuel. The time-dependent, two-dimensional numerical code, which includes a detailed kinetic model (177 species and 2986 reactions), diffusive transport, and a gray-gas radiation model, revealed unique flame structure and predicted the minimum extinguishing concentration of agent when added to the air stream. The peak reactivity spot (i.e., reaction kernel) at the flame base stabilized a trailing flame. The calculated flame temperature along the trailing flame decreased downstream due to radiative cooling, causing local extinction at <1250 K and flame tip opening. As the mole fraction of agent in the coflow (Xa) was increased gradually: (1) the premixed-like reaction kernel weakened (i.e., lower heat release rate) (but nonetheless formed at higher temperature); (2) the flame base stabilized increasingly higher above the burner rim, parallel to the axis, until finally blowoff-type extinguishment occurred; (3) the calculated maximum flame temperature remained at nearly constant (≈1700 K) or mildly increased; and (4) the total heat release of the entire flame decreased (inhibited) for CF3Br but increased (enhanced) for C2HF5. In the lifted flame base with added C2HF5, H2O (formed from hydrocarbon-O2 combustion) was converted further to HF and CF2O through exothermic reactions, thus enhancing the heat-release rate peak. In the trailing flame, “two-zone” flame structure developed: CO2 and CF2O were formed primarily in the inner and outer zones, respectively, while HF was formed in both zones. As a result, the unusual (non-chain branching) reactions and the combustion enhancement (increased total heat release) due to the C2HF5 addition occurred primarily in the trailing diffusion flame.  相似文献   

2.
Transported probability density function (TPDF) simulation with sensitivity analysis has been conducted for turbulent non-premixed CH4/H2 flames of the jet-into-hot-coflow (JHC) burner, which is a typical model to emulate moderate or intense low oxygen dilution combustion (MILD). Specifically, two cases with different levels of oxygen in the coflow stream, namely HM1 and HM3, are simulated to reveal the differences between MILD and hot-temperature combustion. The TPDF simulation well predicts the temperature and species distributions including those of OH, CO and NO for both cases with a 25-species mechanism. The reduced reaction activity in HM1 as reflected in the peak OH concentration is well correlated to the reduced oxygen in the coflow stream. The particle-level local sensitivities with respect to mixing and chemical reaction further show dramatic differences in the flame characteristics. HM1 is less sensitive to mixing and reaction parameters than HM3 due to the suppressed combustion process. Specifically, for HM1 the sensitivities to mixing and chemical reactions have comparable magnitude, indicating that the combustion progress is controlled by both mixing and reaction in MILD combustion. For HM3, there is however a change in the combustion mode: during the flame initialization, the combustion progress is more sensitive to chemical reactions, indicating that finite-rate chemistry is the controlling process during the autoignition process for flame stabilization; at further downstream where the flame has established, the combustion progress is controlled by mixing, which is characteristic of nonpremixed flames. An examination of the particles with the largest sensitivities reveals the difference in the controlling mixtures for flame stabilization, namely, the stoichiometric mixtures are important for HM1, whereas, fuel-lean mixtures are controlling for HM3. The study demonstrates the potential of TPDF simulations with sensitivity analysis to investigate the effects of finite-rate chemistry on the flame characteristics and emissions, and reveal the controlling physio-chemical processes in MILD combustion.  相似文献   

3.
Two-dimensional axisymmetric numerical simulation reproduced flames with repetitive extinction and ignition (FREI) in a micro flow reactor with a controlled temperature profile with a stoichiometric n-heptane/air mixture, which have been observed in the experiment. The ignition of hot flame occurred from consumption reactions of CO that was remained in the previous cycle of FREI. Between extinction and ignition locations of hot flames, several other heat release rate peaks related to cool and blue flames were observed for the first time. After the extinction of the hot flame, cool flame by the low-temperature oxidation of n-heptane appeared first and was stabilized in a low wall temperature region. In the downstream of the stable cool flame, a blue flame by the consumption reactions of cool flame products of CH2O and H2O2 appeared. After that, the hot flame ignition occurred from the remaining CO in the downstream of the blue flame. Then after the next hot flame ignition, the blue flame was swept away by the propagating hot flame. Soon before the hot flame merged with the stable cool flame, the hot flame propagation was intensified by the cool flame. After the hot flame merged with the stable cool flame, the hot flame reacted with the incoming fresh mixture of n-C7H16 and O2.  相似文献   

4.
In this paper, the importance of fluctuations in flow field parameters is studied under MILD combustion conditions. In this way, a turbulent non-premixed CH4+H2 jet flame issuing into a hot and deficient co-flow air is modeled using the RANS Axisymmetric equations. The modeling is carried out using the EDC model to describe the turbulence-chemistry interaction. The DRM-22 reduced mechanism and the GRI2.11 full mechanism are used to represent the chemical reactions of H2/methane jet flame. Results illustrate that although the fluctuations in temperature field are small and the reaction zone volume are large in the MILD regime, the fluctuations in temperature and species concentrations are still effective on the flow field. Also, inappropriate dealing with the turbulence effect on chemistry leads to errors in prediction of temperature up to 15% in the present flame. By decreasing of O2 concentration of hot co-flow air, the effect of fluctuations in flow field parameters on flame characteristics are still significant and its effect on species reaction rates does not decrease. On the other hand, although decreasing of jet inlet Reynolds number at constant inlet turbulence intensity addresses to smaller fluctuations in flow filed, it does not lead to lower the effect of turbulence on species distribution and temperature field under MILD combustion conditions.  相似文献   

5.
Having a better understanding of polycyclic aromatic hydrocarbon (PAH) formation under flame conditions contributes to optimizing the fuel reforming process, where soot poisons the downstream catalyst. In this work, the phenyl + 1,3-Butadiyne reaction is systematically investigated to examine its contribution to naphthalene formation. The reaction potential energy surfaces were calculated using DFT/M06–2X/cc-pvtz and G4 methods. The temperature- and pressure-dependent reaction rate constants were calculated using RRKM theory with solving master equation. The results revealed that 2-naphthyl could be directly formed by phenyl + 1,3-Butadiyne reaction. With H assistance, naphthalene could be formed by the pathway of phenyl + 1,3-Butadiyne → C6H5CHCCCH (+H) → C6H5CHCHCCH (+H) →naphthalene +H. The proposed pathway is kinetically favorable, and featured by relatively low energy barrier. The importance of the proposed pathway reaction was confirmed in a premixed and a diffusion C2H4/O2/Ar flame simulations, where the enhancement of naphthalene by the investigated reactions is notable. The mole fraction of A2 is promoted by a factor of 10% in premix C2H4/O2/Ar flame and 30% in C2H4/O2/Ar counterflow flame, bringing the prediction results closer to the experimental results. The relative contribution of different reaction route to A2 formation is evaluated for HACA, cyclopentadienyl radical-cyclopentadienyl radical, phenyl-vinylacetylene[1], benzyl radical-propargyl radical, indene-CH2 and phenyl-1,3-Butadiyne routes in premixed and diffusion C2H4/O2/Ar flames. This work suggests that the PAH growth by 1,3-Butadiyne addition reaction is an effective pathway for A2 formation, which should be considered in future PAH mechanism.  相似文献   

6.
对氢、正烷烃碳氢燃料与氧的对向扩散火焰,其中正烷烃包含了在工业用燃料中广泛应用的CnH2n+2正烷烃CH4~C16H34,对这些燃料的火焰结构进行了分析和比较,系统地分析了压力和拉伸率对火焰行为和热释放率等的影响,其中包含了2115个组分8157个可逆反应.研究结果表明,所有燃料的火焰厚度和热释放率与压力和拉伸率的乘积的平方根成线性关系.在相同工况下,氢的火焰厚度总是大于所有的碳氢燃料,而CH4~C16H34所有的碳氢燃料在相同工况下总是具有几乎相同的燃烧温度分布、燃烧产物分布、火焰厚度和热释放率,该结果表明由这些碳氢燃料组成的混合燃料具有同样的火焰特性.  相似文献   

7.
The phenomenon of superadiabatic flame temperature (SAFT) was discovered and investigated in a low-pressure HN3/N2 flame using numerical modelling. A previously developed mechanism of chemical reactions in the HN3/N2 flame at the pressure 50 Torr and the initial temperature T0 = 296 K was revised. Rate constants of several important reactions involving HN3 (HN3 (+N2) = N2 + NH (+N2), R1; HN3 (+HN3) = N2 + NH (+HN3), R2; HN3 + H = N2 + NH2, R4; HN3 + N = N2 + NNH, R5; and HN3 + NH2 = NH3 + N3, R7) were calculated using quantum chemistry and reaction rate theories. Modified Arrhenius expressions for these reactions are provided for the 300–3500 K temperature range. Modelling of the flame structure and flame propagation velocity of the HN3/N2 flame at p = 50 Torr and T0 = 296 K was performed using the revised mechanism. The results demonstrate the presence of the SAFT phenomenon in the HN3/N2 flame. Analysis of the flame structure and the kinetic mechanism indicates that the cause of SAFT is in the kinetic mechanism: exothermic reactions of radicals with hydrogen atoms occur in the post flame zone, which results in the formation of super equilibrium H2 concentrations. The flame propagation velocity is largely determined by the second-order HN3 decomposition reaction and not by the reaction of HN3 with H, as was previously assumed. Calculation of the flame propagation velocity according to the Zeldovich-Frank-Kamenetsky theory with the decomposition reaction as a limiting stage yielded a value that agrees with that obtained in numerical modelling using the complete reaction mechanism.  相似文献   

8.
This paper reported the analysis of dilution effects on the opposed-jet H2/CO syngas diffusion flames. A computational model, OPPDIF coupled with narrowband radiation calculation, was used to study one-dimensional counterflow syngas diffusion flames with fuel side dilution from CO2, H2O and N2. To distinguish the contributing effects from inert, thermal/diffusion, chemical, and radiation effects, five artificial and chemically inert species XH2, XCO, XCO2, XH2O and XN2 with the same physical properties as their counterparts were assumed. By comparing the realistic and hypothetical flames, the individual dilution effects on the syngas flames were revealed. Results show, for equal-molar syngas (H2/CO = 1) at strain rate of 10 s?1, the maximum flame temperature decreases the most by CO2 dilution, followed by H2O and N2. The inert effect, which reduces the chemical reaction rates by behaving as the inert part of mixtures, drops flame temperature the most. The thermal/diffusion effect of N2 and the chemical effect of H2O actually contribute the increase of flame temperature. However, the chemical effect of CO2 and the radiation effect always decreases flame temperature. For flame extinction by adding diluents, CO2 dilution favours flame extinction from all contributing effects, while thermal/diffusion effects of H2O and N2 extend the flammability. Therefore, extinction dilution percentage is the least for CO2. The dilution effects on chemical kinetics are also examined. Due to the inert effect, the reaction rate of R84 (OH+H2 = H+H2O) is decreasing greatly with increasing dilution percentage while R99 (CO+OH→CO2+H) is less affected. When the diluents participate chemically, reaction R99 is promoted and R84 is inhibited with H2O addition, but the trend reverses with CO2 dilution. Besides, the main chain-branching reaction of R38 (H+O2→O+OH) is enhanced by the chemical effect of H2O dilution, but suppressed by CO2 dilution. Relatively, the influences of thermal/diffusion and radiation effects on the reaction kinetics are then small.  相似文献   

9.
Lean premixed combustion has potential advantages of reducing pollutants and improving fuel economy. In some lean engine concepts, the fuel is directly injected into the combustion chamber resulting in a distribution of lean fuel/air mixtures. In this case, very lean mixtures can burn when supported by hot products from more strongly burning flames. This study examines the downstream interaction of opposed jets of a lean-limit CH4/air mixture vs. a lean H2/air flame. The CH4 mixtures are near or below the lean flammability limit. The flame composition is measured by laser-induced Raman scattering and is compared to numerical simulations with detailed chemistry and molecular transport including the Soret effect. Several sub-limit lean CH4/air flames supported by the products from the lean H2/air flame are studied, and a small amount of CO2 product (around 1% mole fraction) is formed in a “negative flame speed” flame where the weak CH4/air mixture diffuses across the stagnation plane into the hot products from the H2/air flame. Raman scattering measurements of temperature and species concentration are compared to detailed simulations using GRI-3.0, C1, and C2 chemical kinetic mechanisms, with good agreement obtained in the lean-limit or sub-limit flames. Stronger self-propagating CH4/air mixtures result in a much higher concentration of product (around 6% CO2 mole fraction), and the simulation results are sensitive to the specific chemical mechanism. These model-data comparisons for stronger CH4/air flames improve when using either the C2 or the Williams mechanisms.  相似文献   

10.
Propagation of a H2-added strained laminar CH4/air flame in a rich-to-lean stratified mixture is numerically studied. The back-support effect, which is known to enhance the consumption speed of a flame propagating into a leaner mixture compared to that into a homogeneous mixture, is evaluated. A new method is devised to characterize unsteady reactant-to-reactant counterflow flames under transiently decreasing equivalence ratio, in order to elucidate the influence of flow strain on the back-support effect. In contrast to the conventional reactant-to-product configurations, the current configuration is more relevant to unsteady stratified flames back-supported by their own combustion products. Moreover, since H2 distribution downstream of the flame is known to play a crucial role in back-supported CH4/air flames, the influence of H2 addition in the upstream mixture is examined. The results suggest that a larger strain rate leads to a larger equivalence ratio gradient at the reaction zone through increased flow divergence, which amplifies the back-support. Meanwhile, since H2 addition in the upstream mixture does not affect the downstream H2 content, the relative increase in the consumption speed, i.e. the back-support, is suppressed with larger H2 addition. Especially, when the upstream H2 content decreases with the equivalence ratio, the H2 preferentially diffuses toward the unburned gas, which mitigates H2 accumulation in the preheat zone and further weakens the back-support.  相似文献   

11.
On the basis of a multi-step kinetic mechanism for flame inhibition by organophosphorus compounds including more than 200 reactions, a skeletal mechanism for flame inhibition by trimethylphosphate was developed. The mechanism consists of 22 irreversible elementary reactions, involving nine phosphorus-containing species. Selection of the crucial steps was performed by analysing P-element fluxes from species to species and by calculating net reaction rates of phosphorus-involving reactions versus the flames zone. The developed mechanism was validated by comparing the modelling results with the measured and simulated (using the starting initial mechanism) speed and the chemical structure of H2/O2, CH4/O2 and syngas/air flames doped with trimethylphosphate. The mechanism was shown to satisfactorily predict the speed of H2/O2/N2 flames with various dilution ratios, CH4/air and syngas/air flames doped with trimethylphosphate. The skeletal mechanism was also shown to satisfactorily predict the spatial variation of H and OH radicals and the final phosphorus-containing products of the inhibitor combustion. Further reduction of the skeletal mechanism without modification of the rate constants recommended in the starting mechanism was shown to result in noticeable disagreement of the flame speed and structure.  相似文献   

12.
The instability attenuation mechanism of fuel staging was investigated in a CH4/H2 fueled dual-nozzle gas turbine combustor. Fuel staging was implemented using an asymmetry in fuel composition between the two nozzles. The fuel composition of the upper nozzle was varied while keeping that of the lower nozzle constant. Under these conditions, the self-excited and forced responses of fuel-staged flames were analyzed using OH* chemiluminescence imaging, OH planar laser-induced fluorescence, and particle image velocimetry. In the self-excited measurements, although strong combustion instability was exhibited in the symmetric condition, it weakened gradually with increasing asymmetry in fuel composition. The symmetric flame exhibited significant fluctuations in the heat release rate around the flame tip, which acted as the primary cause of driving combustion instability. However, in asymmetric flames, the H2 addition induced phase leads in heat release rate fluctuations at the upper region, which damped combustion instability. Thus, our observations revealed a high correlation between the phase leads and the attenuation of combustion instability. Analyses of the forced responses showed that the heat release rate fluctuations were induced by interactions between the flame and the shedding vortex released from the nozzle tip into the downstream. Although these characteristics of shedding vortices did not depend on the H2 addition, the change in the axial position of the flame caused by the H2 addition induced the relocation of the site, at which the flame interacted with the vortex. Subsequently, it induced phase leads in the heat release rate fluctuations. The phase difference of heat release rate fluctuations between the two flames due to this phase leads enlarged progressively with increasing asymmetry in fuel composition, leading to the attenuation of combustion instability in asymmetric conditions.  相似文献   

13.
Recent theoretical studies have shown that termolecular chemistry can be facilitated through reactions of flame radicals (H, O, and OH) or O2 with highly-energized collision complexes (either radical or stable species) formed in exothermic reactions. In this work, radical-radical recombination reaction induced termolecular chemistry and its impact on combustion modeling was studied. Two recombination reactions, H + CH3 + M → CH4 + M and H + OH + M → H2O + M, were analyzed using ab-initio master equation analyses guided by quasiclassical trajectory results. The dynamics results and the master equation calculations indicate that CH4? and H2O? (formed in the two radical-radical reactions outlined above) react rapidly with flame radicals and O2 at rates that are competitive with collisional cooling. The addition of these processes into conventional combustion modeling requires two modifications: the inclusion of the new nonthermal termolecular reaction rates and the simultaneous reduction of the competing recombination reaction rates. The former is described with newly derived Arrhenius expressions based on quasiclassical trajectories, and the latter is achieved by perturbing the recombination reaction rate during the simulation. Kinetic modeling was used to gauge the impact of including this nonthermal chemistry for H2/CH4-air laminar flames speeds. Inclusion of this nonthermal chemistry has a noticeable impact on simulated flame speeds. The procedure developed here can be utilized to properly quantify the effects of such nonthermal reactions in macroscopic kinetic models.  相似文献   

14.
Large eddy simulations (LES) are employed to investigate the effect of the inlet turbulence intensity on the H2/CH4 flame structure in a hot and diluted co-flow stream which emulates the (Moderate or Intense Low-oxygen Dilution) MILD combustion regime. In this regard, three fuel inlet turbulence intensity profiles with the values of 4%, 7% and 10% are superimposed on the annular mixing layer. The effects of these changes on the flame structure under the MILD condition are studied for two oxygen concentrations of 3% and 9% (by mass) in the oxidiser stream and three hot co-flow temperatures 1300, 1500 and 1750 K. The turbulence-chemistry interaction of the numerically unresolved scales is modelled using the (Partially Stirred Reactor) PaSR method, where the full mechanism of GRI-2.11 represents the chemical reactions. The influences of the turbulence intensity on the flame structure under the MILD condition are studied by using the profile of temperature, CO and OH mass fractions in both physical and mixture fraction spaces at two downstream locations. Also, the effects of this parameter are investigated by contours of OH, HCO and CH2O radicals in an area near the nozzle exit zone. Results show that increasing the fuel inlet turbulence intensity has a profound effect on the flame structure particularly at low oxygen mass fraction. This increment weakens the combustion zone and results in a decrease in the peak values of the flame temperature and OH and CO mass fractions. Furthermore, increasing the inlet turbulence intensity decreases the flame thickness, and increases the MILD flame instability and diffusion of un-burnt fuel through the flame front. These effects are reduced by increasing the hot co-flow temperature which reinforces the reaction zone.  相似文献   

15.
Moderate or intense low oxygen dilution (MILD) combustion has been the focus of a range of fundamental experimental and numerical studies. Reasonable agreement between experimental and numerical investigations, however, requires finite-rate chemistry models and, often, ad hoc model adjustment. To remedy this, an adaptive eddy dissipation concept (EDC) combustion model has previously been developed to target conditions encountered in MILD combustion; however, this model relies on a simplified, pre-defined assumption about the combustion chemistry. The present paper reports a generalised version of the modified EDC model without the need for an assumed, single-step chemical reaction or ad hoc coefficient tuning. The results show good agreement with experimental measurements of two CH4/H2 flames in hot coflows, showing improvements over the standard EDC model as well as the previously published modified EDC model. The updated version of the EDC model also demonstrates the capacity to reproduce the downstream transition in flame structure of a MILD jet flame seen experimentally, but which has previously proven challenging to capture computationally. Analyses of the previously identified dominant heat-release reactions provide insight into the structural differences between a conventional autoignitive flame and a flame in the MILD combustion regime, whilst highlighting the requirement for a generalised EDC combustion model.  相似文献   

16.
O2/H2O combustion, as a new evolution of oxy-fuel combustion, has gradually gained more attention recently for carbon capture in a coal-fired power plant. The physical and chemical properties of steam e.g. reactivity, thermal capacity, diffusivity, can affect the coal combustion process. In this work, the ignition and volatile combustion characteristics of a single lignite particle were first investigated in a fluidized bed combustor under O2/H2O atmosphere. The flame and particle temperatures were measured by a calibrated two-color pyrometry and pre-buried thermocouple, respectively. Results indicated that the volatile flame became smaller and brighter as the oxygen concentration increased. The ignition delay time of particle in dense phase was shorter than that in dilute phase due to its higher heat transfer coefficient. Also, the volatile flame was completely separated from particles (defined as off-flame) in dense phase while the flame lay on the particle surface (defined as on-flame) in dilute phase. The self-heating of fuel particles by on-flame in dilute phase was more obvious than that in dense phase, leading to earlier char combustion. At low oxygen concentration, the flame in the H2O atmosphere was darker than that in the N2 atmosphere because the heat capacity of H2O is higher than that of N2. With the increase of oxygen concentration, the flame temperature in the O2/H2O atmosphere was dramatically enhanced rather than that in the O2/N2 atmosphere, where the diffusion rate of oxygen in O2/N2 atmosphere became the dominant factor.  相似文献   

17.
18.
The chemical and thermal structures of flame of composite pseudo-propellants based on cyclic nitramines (HMX, RDX) and azide polymers (GAP and BAMO–AMMO copolymer) were investigated at a pressure of 1.0 MPa by molecular beam mass spectrometry and a microthermocouple technique. Eleven species H2, H2O, HCN, CO, CO2, N2, N2O, CH2O, NO, NO2, and nitramine vapor (RDXv or HMXv), were identified, and their concentration profiles were measured in HMX/GAP and RDX/GAP pseudo-propellant flames at a pressure of 1 MPa. Two main zones of chemical reactions in the flame of nitramine/GAP pseudo-propellants were found. In the first, narrow, zone 0.1 mm wide (adjacent to the burning surface), complete consumption of nitramine vapor and NO2 with the formation of NO, HCN, CO, H2, and N2 occurs. In the second, wider high-temperature zone, oxidation of HCN and CH2O by NO and N2O with the subsequent formation of CO, H2, and N2 takes place. The leading reactions in the high-temperature zone of flame of nitramine/GAP pseudo-propellants are the same as in the case of pure nitramines. In the case of nitramine/BAMO–AMMO pseudo-propellants a presence of carbonaceous particles on the burning surface did not allow us to analyze the zone adjacent to the burning surface, therefore only one flame zone was found. Temperature profiles in the combustion wave of nitramine/azide polymer pseudo-propellants were measured at 1 MPa. The data obtained can be used to develop and validate a self-sustain combustion model for pseudo-propellants based on nitramines and azide polymers.  相似文献   

19.
To avoid the complexities associated with the droplet/vapor transport and nonuniform evaporation processes, a fundamental investigation of liquid fuel combustion in idealized configurations is very useful. An experimental–computational investigation of prevaporized n-heptane nonpremixed and partially premixed flames established in a counterflow burner is described. There is a general agreement between various facets of our nonpremixed flame measurements and the literature data. The partially premixed flames are characterized by a double flame structure. This becomes more distinct as the strain rate decreases and partial premixing increases, which also increases the separation distance between the two reaction zones. The peak partially premixed flame temperature increases with increasing premixing of the fuel stream. The peak CO2 and H2O concentrations are relatively insensitive to partial premixing. The CO and H2 peak concentrations on the premixed side increase as the fuel-side equivalence ratio decreases. These species are transported to the nonpremixed reaction zone where they oxidize. The C2 species have peaks in the premixed reaction zone. The concentrations of olefins are ten times larger than those of the corresponding paraffins. The oxidizer is present in partially premixed flames throughout the combustion system and there are no regions characterized by simultaneous high temperature and high fuel concentration. As a result, pyrolysis reactions leading to soot formation are greatly diminished.  相似文献   

20.
An experimental investigation of the oxidation of hydrogen diluted by nitrogen in presence of CO2 was performed in a fused silica jet-stirred reactor (JSR) over the temperature range 800-1050 K, from fuel-lean to fuel-rich conditions and at atmospheric pressure. The mean residence time was kept constant in the experiments: 120 ms at 1 atm and 250 ms at 10 atm. The effect of variable initial concentrations of hydrogen on the combustion of methane and methane/carbon dioxide mixtures diluted by nitrogen was also experimentally studied. Concentration profiles for O2, H2, H2O, CO, CO2, CH2O, CH4, C2H6, C2H4, and C2H2 were measured by sonic probe sampling followed by chemical analyses (FT-IR, gas chromatography). A detailed chemical kinetic modeling of the present experiments and of the literature data (flame speed and ignition delays) was performed using a recently proposed kinetic scheme showing good agreement between the data and this modeling, and providing further validation of the kinetic model (128 species and 924 reversible reactions). Sensitivity and reaction paths analyses were used to delineate the important reactions influencing the kinetic of oxidation of the fuels in absence and in presence of additives (CO2 and H2). The kinetic reaction scheme proposed helps understanding the inhibiting effect of CO2 on the oxidation of hydrogen and methane and should be useful for gas turbine modeling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号